|
--- |
|
license: other |
|
datasets: |
|
- Thermostatic/flowers |
|
- jondurbin/truthy-dpo-v0.1 |
|
- Intel/orca_dpo_pairs |
|
- glaiveai/glaive-function-calling-v2 |
|
license_name: gemma-terms-of-use |
|
license_link: https://ai.google.dev/gemma/terms |
|
model-index: |
|
- name: gemma-orchid-7b-dpo |
|
results: |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: AI2 Reasoning Challenge (25-Shot) |
|
type: ai2_arc |
|
config: ARC-Challenge |
|
split: test |
|
args: |
|
num_few_shot: 25 |
|
metrics: |
|
- type: acc_norm |
|
value: 62.88 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/gemma-orchid-7b-dpo |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: HellaSwag (10-Shot) |
|
type: hellaswag |
|
split: validation |
|
args: |
|
num_few_shot: 10 |
|
metrics: |
|
- type: acc_norm |
|
value: 80.95 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/gemma-orchid-7b-dpo |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MMLU (5-Shot) |
|
type: cais/mmlu |
|
config: all |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 61.41 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/gemma-orchid-7b-dpo |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: TruthfulQA (0-shot) |
|
type: truthful_qa |
|
config: multiple_choice |
|
split: validation |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: mc2 |
|
value: 53.27 |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/gemma-orchid-7b-dpo |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: Winogrande (5-shot) |
|
type: winogrande |
|
config: winogrande_xl |
|
split: validation |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 77.51 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/gemma-orchid-7b-dpo |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: GSM8k (5-shot) |
|
type: gsm8k |
|
config: main |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 50.19 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/gemma-orchid-7b-dpo |
|
name: Open LLM Leaderboard |
|
--- |
|
|
|
# Gemma Orchid 7b |
|
|
|
<div align="center"> |
|
|
|
![image/webp](https://cdn-uploads.huggingface.co/production/uploads/6455cc8d679315e4ef16fbec/7pqiroePJW0WWm6JxwBoO.webp) |
|
|
|
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) |
|
</div> |
|
|
|
This model is the second checkpoint of a future project. Its capable of function calling as well as having a strong base in communicational skills. |
|
|
|
This model has been finetuned on roughly 80k samples so far. |
|
|
|
# Training |
|
|
|
+ Time to complete: ~20 hours |
|
+ Datasets: Thermostatic/flowers, Intel/orca_dpo_pairs, jondurbin/truthy-dpo-v0.1, glaiveai/glaive_function_calling_v2 |
|
+ Evaluation loss: 0.69 |
|
+ Method: LoRa |
|
+ Prompt Format: ChatML |
|
|
|
Thermostatic/flowers is a blend of open source model generations formatted in ShareGPT. It also includes all of capybara. |
|
|
|
This model has been exposed to a wide variety of data. [macadeliccc/gemma-function-calling-7b](https://huggingface.co/macadeliccc/gemma-function-calling-7b) is suitable to finetune further with the dataset of your choosing. |
|
|
|
#### Running the model on a CPU |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("macadeliccc/gemma-orchid-7b-dpo") |
|
model = AutoModelForCausalLM.from_pretrained("macadeliccc/gemma-orchid-7b-dpo") |
|
|
|
input_text = "Write me a poem about Machine Learning." |
|
input_ids = tokenizer(input_text, return_tensors="pt") |
|
|
|
outputs = model.generate(**input_ids) |
|
print(tokenizer.decode(outputs[0])) |
|
``` |
|
|
|
|
|
#### Running the model on a single / multi GPU |
|
|
|
|
|
```python |
|
# pip install accelerate |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("macadeliccc/gemma-orchid-7b-dpo") |
|
model = AutoModelForCausalLM.from_pretrained("macadeliccc/gemma-orchid-7b-dpo", device_map="auto") |
|
|
|
input_text = "Write me a poem about Machine Learning." |
|
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") |
|
|
|
outputs = model.generate(**input_ids) |
|
print(tokenizer.decode(outputs[0])) |
|
``` |
|
|
|
|
|
#### Running the model on a GPU using different precisions |
|
|
|
* _Using `torch.float16`_ |
|
|
|
```python |
|
# pip install accelerate |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("macadeliccc/gemma-orchid-7b-dpo") |
|
model = AutoModelForCausalLM.from_pretrained("macadeliccc/gemma-orchid-7b-dpo", device_map="auto", torch_dtype=torch.float16) |
|
|
|
input_text = "Write me a poem about Machine Learning." |
|
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") |
|
|
|
outputs = model.generate(**input_ids) |
|
print(tokenizer.decode(outputs[0])) |
|
``` |
|
|
|
* _Using `torch.bfloat16`_ |
|
|
|
```python |
|
# pip install accelerate |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("macadeliccc/gemma-orchid-7b-dpo") |
|
model = AutoModelForCausalLM.from_pretrained("macadeliccc/gemma-orchid-7b-dpo", device_map="auto", torch_dtype=torch.bfloat16) |
|
|
|
input_text = "Write me a poem about Machine Learning." |
|
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") |
|
|
|
outputs = model.generate(**input_ids) |
|
print(tokenizer.decode(outputs[0])) |
|
``` |
|
|
|
#### Quantized Versions through `bitsandbytes` |
|
|
|
* _Using 8-bit precision (int8)_ |
|
|
|
```python |
|
# pip install bitsandbytes accelerate |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig |
|
|
|
quantization_config = BitsAndBytesConfig(load_in_8bit=True) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("macadeliccc/gemma-orchid-7b-dpo") |
|
model = AutoModelForCausalLM.from_pretrained("macadeliccc/gemma-orchid-7b-dpo", quantization_config=quantization_config) |
|
|
|
input_text = "Write me a poem about Machine Learning." |
|
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") |
|
|
|
outputs = model.generate(**input_ids) |
|
print(tokenizer.decode(outputs[0])) |
|
``` |
|
|
|
* _Using 4-bit precision_ |
|
|
|
```python |
|
# pip install bitsandbytes accelerate |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig |
|
|
|
quantization_config = BitsAndBytesConfig(load_in_4bit=True) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("macadeliccc/gemma-orchid-7b-dpo") |
|
model = AutoModelForCausalLM.from_pretrained("macadeliccc/gemma-orchid-7b-dpo", quantization_config=quantization_config) |
|
|
|
input_text = "Write me a poem about Machine Learning." |
|
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") |
|
|
|
outputs = model.generate(**input_ids) |
|
print(tokenizer.decode(outputs[0])) |
|
``` |
|
|
|
|
|
#### Other optimizations |
|
|
|
* _Flash Attention 2_ |
|
|
|
First make sure to install `flash-attn` in your environment `pip install flash-attn` |
|
|
|
```diff |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
torch_dtype=torch.float16, |
|
+ attn_implementation="flash_attention_2" |
|
).to(0) |
|
``` |
|
|
|
### Inputs and outputs |
|
|
|
* **Input:** Text string, such as a question, a prompt, or a document to be |
|
summarized. |
|
* **Output:** Generated English-language text in response to the input, such |
|
as an answer to a question, or a summary of a document. |
|
|
|
## Evaluations |
|
|
|
In progress |
|
|
|
## ExLlamaV2 |
|
|
|
Available [here](https://huggingface.co/bartowski/gemma-orchid-7b-dpo-exl2) |
|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) |
|
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_macadeliccc__gemma-orchid-7b-dpo) |
|
|
|
| Metric |Value| |
|
|---------------------------------|----:| |
|
|Avg. |64.37| |
|
|AI2 Reasoning Challenge (25-Shot)|62.88| |
|
|HellaSwag (10-Shot) |80.95| |
|
|MMLU (5-Shot) |61.41| |
|
|TruthfulQA (0-shot) |53.27| |
|
|Winogrande (5-shot) |77.51| |
|
|GSM8k (5-shot) |50.19| |
|
|
|
|