SentenceTransformer based on sentence-transformers/clip-ViT-L-14

This is a sentence-transformers model finetuned from sentence-transformers/clip-ViT-L-14 on the multimodal_lpt2 dataset. It maps sentences & paragraphs to a None-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): CLIPModel()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("machinev/model")
# Run inference
sentences = [
    'the main power cable is not connected with LPT ',
    '/content/sample_data/images/LPT (4).jpeg',
    'the main power cable is not connected with LPT ',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Triplet

  • Datasets: yt-title-thumbnail-train and yt-title-thumbnail-validation
  • Evaluated with TripletEvaluator
Metric yt-title-thumbnail-train yt-title-thumbnail-validation
cosine_accuracy 0.0 0.0

Training Details

Training Dataset

multimodal_lpt2

  • Dataset: multimodal_lpt2 at 9f649f9
  • Size: 12 training samples
  • Columns: text, image_path, anchor, positive, and negative
  • Approximate statistics based on the first 12 samples:
    text image_path anchor positive negative
    type string string PIL.JpegImagePlugin.JpegImageFile string string
    details
    • min: 11 tokens
    • mean: 11.42 tokens
    • max: 12 tokens
    • min: 18 tokens
    • mean: 18.42 tokens
    • max: 19 tokens
    • min: 11 tokens
    • mean: 11.42 tokens
    • max: 12 tokens
    • min: 11 tokens
    • mean: 11.42 tokens
    • max: 12 tokens
  • Samples:
    text image_path anchor positive negative
    the main power cable is not connected with LPT /content/sample_data/images/LPT (1).jpeg the main power cable is not connected with LPT the main power cable is not connected with LPT
    the main power cable is connected with LPT /content/sample_data/images/LPT (2).jpeg the main power cable is connected with LPT the main power cable is connected with LPT
    the main power cable is connected with LPT /content/sample_data/images/LPT (3).jpeg the main power cable is connected with LPT the main power cable is connected with LPT
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Evaluation Dataset

multimodal_lpt2

  • Dataset: multimodal_lpt2 at 9f649f9
  • Size: 12 evaluation samples
  • Columns: text, image_path, anchor, positive, and negative
  • Approximate statistics based on the first 12 samples:
    text image_path anchor positive negative
    type string string PIL.JpegImagePlugin.JpegImageFile string string
    details
    • min: 11 tokens
    • mean: 11.42 tokens
    • max: 12 tokens
    • min: 18 tokens
    • mean: 18.42 tokens
    • max: 19 tokens
    • min: 11 tokens
    • mean: 11.42 tokens
    • max: 12 tokens
    • min: 11 tokens
    • mean: 11.42 tokens
    • max: 12 tokens
  • Samples:
    text image_path anchor positive negative
    the main power cable is not connected with LPT /content/sample_data/images/LPT (1).jpeg the main power cable is not connected with LPT the main power cable is not connected with LPT
    the main power cable is connected with LPT /content/sample_data/images/LPT (2).jpeg the main power cable is connected with LPT the main power cable is connected with LPT
    the main power cable is connected with LPT /content/sample_data/images/LPT (3).jpeg the main power cable is connected with LPT the main power cable is connected with LPT
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • learning_rate: 0.0001
  • num_train_epochs: 2

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 0.0001
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 2
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss yt-title-thumbnail-train_cosine_accuracy yt-title-thumbnail-validation_cosine_accuracy
-1 -1 - - 0.0 0.0
1.0 1 8.5381 7.5693 - -
2.0 2 7.5693 7.1228 - -

Framework Versions

  • Python: 3.11.11
  • Sentence Transformers: 3.4.1
  • Transformers: 4.48.3
  • PyTorch: 2.5.1+cu124
  • Accelerate: 1.3.0
  • Datasets: 3.3.2
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
10
Safetensors
Model size
428M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for machinev/model

Finetuned
(3)
this model

Dataset used to train machinev/model

Evaluation results