machinev commited on
Commit
1371f59
·
verified ·
1 Parent(s): c1eb17a

Add new SentenceTransformer model

Browse files
README.md ADDED
@@ -0,0 +1,425 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:12
8
+ - loss:MultipleNegativesRankingLoss
9
+ base_model: sentence-transformers/clip-ViT-L-14
10
+ widget:
11
+ - source_sentence: 'the main power cable is connected with LPT '
12
+ sentences:
13
+ - 'the main power cable is connected with LPT '
14
+ - 'the main power cable is connected with LPT '
15
+ - /content/sample_data/images/LPT (2).jpeg
16
+ - source_sentence: 'the fuse is not blown it is working properly '
17
+ sentences:
18
+ - 'the fuse is not blown it is working properly '
19
+ - 'the fuse is not blown it is working properly '
20
+ - /content/sample_data/images/LPT (16).jpeg
21
+ - source_sentence: 'the fuse is blown and this might not work properly '
22
+ sentences:
23
+ - /content/sample_data/images/LPT (20).jpeg
24
+ - 'the fuse is blown and this might not work properly '
25
+ - 'the fuse is blown and this might not work properly '
26
+ - source_sentence: 'the fuse is blown and this might not work properly '
27
+ sentences:
28
+ - 'the fuse is blown and this might not work properly '
29
+ - /content/sample_data/images/LPT (21).jpeg
30
+ - 'the fuse is blown and this might not work properly '
31
+ - source_sentence: 'the main power cable is not connected with LPT '
32
+ sentences:
33
+ - 'the main power cable is not connected with LPT '
34
+ - /content/sample_data/images/LPT (4).jpeg
35
+ - 'the main power cable is not connected with LPT '
36
+ datasets:
37
+ - machinev/multimodalLPT2
38
+ pipeline_tag: sentence-similarity
39
+ library_name: sentence-transformers
40
+ metrics:
41
+ - cosine_accuracy
42
+ model-index:
43
+ - name: SentenceTransformer based on sentence-transformers/clip-ViT-L-14
44
+ results:
45
+ - task:
46
+ type: triplet
47
+ name: Triplet
48
+ dataset:
49
+ name: yt title thumbnail train
50
+ type: yt-title-thumbnail-train
51
+ metrics:
52
+ - type: cosine_accuracy
53
+ value: 0.0
54
+ name: Cosine Accuracy
55
+ - task:
56
+ type: triplet
57
+ name: Triplet
58
+ dataset:
59
+ name: yt title thumbnail validation
60
+ type: yt-title-thumbnail-validation
61
+ metrics:
62
+ - type: cosine_accuracy
63
+ value: 0.0
64
+ name: Cosine Accuracy
65
+ ---
66
+
67
+ # SentenceTransformer based on sentence-transformers/clip-ViT-L-14
68
+
69
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/clip-ViT-L-14](https://huggingface.co/sentence-transformers/clip-ViT-L-14) on the [multimodal_lpt2](https://huggingface.co/datasets/machinev/multimodalLPT2) dataset. It maps sentences & paragraphs to a None-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
70
+
71
+ ## Model Details
72
+
73
+ ### Model Description
74
+ - **Model Type:** Sentence Transformer
75
+ - **Base model:** [sentence-transformers/clip-ViT-L-14](https://huggingface.co/sentence-transformers/clip-ViT-L-14) <!-- at revision 3b12140ad0f9750045e404f187cfccd04bcaf250 -->
76
+ - **Maximum Sequence Length:** None tokens
77
+ - **Output Dimensionality:** None dimensions
78
+ - **Similarity Function:** Cosine Similarity
79
+ - **Training Dataset:**
80
+ - [multimodal_lpt2](https://huggingface.co/datasets/machinev/multimodalLPT2)
81
+ <!-- - **Language:** Unknown -->
82
+ <!-- - **License:** Unknown -->
83
+
84
+ ### Model Sources
85
+
86
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
87
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
88
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
89
+
90
+ ### Full Model Architecture
91
+
92
+ ```
93
+ SentenceTransformer(
94
+ (0): CLIPModel()
95
+ )
96
+ ```
97
+
98
+ ## Usage
99
+
100
+ ### Direct Usage (Sentence Transformers)
101
+
102
+ First install the Sentence Transformers library:
103
+
104
+ ```bash
105
+ pip install -U sentence-transformers
106
+ ```
107
+
108
+ Then you can load this model and run inference.
109
+ ```python
110
+ from sentence_transformers import SentenceTransformer
111
+
112
+ # Download from the 🤗 Hub
113
+ model = SentenceTransformer("machinev/model")
114
+ # Run inference
115
+ sentences = [
116
+ 'the main power cable is not connected with LPT ',
117
+ '/content/sample_data/images/LPT (4).jpeg',
118
+ 'the main power cable is not connected with LPT ',
119
+ ]
120
+ embeddings = model.encode(sentences)
121
+ print(embeddings.shape)
122
+ # [3, 1024]
123
+
124
+ # Get the similarity scores for the embeddings
125
+ similarities = model.similarity(embeddings, embeddings)
126
+ print(similarities.shape)
127
+ # [3, 3]
128
+ ```
129
+
130
+ <!--
131
+ ### Direct Usage (Transformers)
132
+
133
+ <details><summary>Click to see the direct usage in Transformers</summary>
134
+
135
+ </details>
136
+ -->
137
+
138
+ <!--
139
+ ### Downstream Usage (Sentence Transformers)
140
+
141
+ You can finetune this model on your own dataset.
142
+
143
+ <details><summary>Click to expand</summary>
144
+
145
+ </details>
146
+ -->
147
+
148
+ <!--
149
+ ### Out-of-Scope Use
150
+
151
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
152
+ -->
153
+
154
+ ## Evaluation
155
+
156
+ ### Metrics
157
+
158
+ #### Triplet
159
+
160
+ * Datasets: `yt-title-thumbnail-train` and `yt-title-thumbnail-validation`
161
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
162
+
163
+ | Metric | yt-title-thumbnail-train | yt-title-thumbnail-validation |
164
+ |:--------------------|:-------------------------|:------------------------------|
165
+ | **cosine_accuracy** | **0.0** | **0.0** |
166
+
167
+ <!--
168
+ ## Bias, Risks and Limitations
169
+
170
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
171
+ -->
172
+
173
+ <!--
174
+ ### Recommendations
175
+
176
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
177
+ -->
178
+
179
+ ## Training Details
180
+
181
+ ### Training Dataset
182
+
183
+ #### multimodal_lpt2
184
+
185
+ * Dataset: [multimodal_lpt2](https://huggingface.co/datasets/machinev/multimodalLPT2) at [9f649f9](https://huggingface.co/datasets/machinev/multimodalLPT2/tree/9f649f9c95cc375b7ec5895fb47f642f251d288e)
186
+ * Size: 12 training samples
187
+ * Columns: <code>text</code>, <code>image_path</code>, <code>anchor</code>, <code>positive</code>, and <code>negative</code>
188
+ * Approximate statistics based on the first 12 samples:
189
+ | | text | image_path | anchor | positive | negative |
190
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
191
+ | type | string | string | PIL.JpegImagePlugin.JpegImageFile | string | string |
192
+ | details | <ul><li>min: 11 tokens</li><li>mean: 11.42 tokens</li><li>max: 12 tokens</li></ul> | <ul><li>min: 18 tokens</li><li>mean: 18.42 tokens</li><li>max: 19 tokens</li></ul> | <ul><li></li></ul> | <ul><li>min: 11 tokens</li><li>mean: 11.42 tokens</li><li>max: 12 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 11.42 tokens</li><li>max: 12 tokens</li></ul> |
193
+ * Samples:
194
+ | text | image_path | anchor | positive | negative |
195
+ |:-------------------------------------------------------------|:------------------------------------------------------|:-------------------------------------------------------------------------------------------------|:-------------------------------------------------------------|:-------------------------------------------------------------|
196
+ | <code>the main power cable is not connected with LPT </code> | <code>/content/sample_data/images/LPT (1).jpeg</code> | <code><PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=3024x4032 at 0x7D40680FFFD0></code> | <code>the main power cable is not connected with LPT </code> | <code>the main power cable is not connected with LPT </code> |
197
+ | <code>the main power cable is connected with LPT </code> | <code>/content/sample_data/images/LPT (2).jpeg</code> | <code><PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=3024x4032 at 0x7D40680FDF90></code> | <code>the main power cable is connected with LPT </code> | <code>the main power cable is connected with LPT </code> |
198
+ | <code>the main power cable is connected with LPT </code> | <code>/content/sample_data/images/LPT (3).jpeg</code> | <code><PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=3024x4032 at 0x7D4063F4C610></code> | <code>the main power cable is connected with LPT </code> | <code>the main power cable is connected with LPT </code> |
199
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
200
+ ```json
201
+ {
202
+ "scale": 20.0,
203
+ "similarity_fct": "cos_sim"
204
+ }
205
+ ```
206
+
207
+ ### Evaluation Dataset
208
+
209
+ #### multimodal_lpt2
210
+
211
+ * Dataset: [multimodal_lpt2](https://huggingface.co/datasets/machinev/multimodalLPT2) at [9f649f9](https://huggingface.co/datasets/machinev/multimodalLPT2/tree/9f649f9c95cc375b7ec5895fb47f642f251d288e)
212
+ * Size: 12 evaluation samples
213
+ * Columns: <code>text</code>, <code>image_path</code>, <code>anchor</code>, <code>positive</code>, and <code>negative</code>
214
+ * Approximate statistics based on the first 12 samples:
215
+ | | text | image_path | anchor | positive | negative |
216
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
217
+ | type | string | string | PIL.JpegImagePlugin.JpegImageFile | string | string |
218
+ | details | <ul><li>min: 11 tokens</li><li>mean: 11.42 tokens</li><li>max: 12 tokens</li></ul> | <ul><li>min: 18 tokens</li><li>mean: 18.42 tokens</li><li>max: 19 tokens</li></ul> | <ul><li></li></ul> | <ul><li>min: 11 tokens</li><li>mean: 11.42 tokens</li><li>max: 12 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 11.42 tokens</li><li>max: 12 tokens</li></ul> |
219
+ * Samples:
220
+ | text | image_path | anchor | positive | negative |
221
+ |:-------------------------------------------------------------|:------------------------------------------------------|:-------------------------------------------------------------------------------------------------|:-------------------------------------------------------------|:-------------------------------------------------------------|
222
+ | <code>the main power cable is not connected with LPT </code> | <code>/content/sample_data/images/LPT (1).jpeg</code> | <code><PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=3024x4032 at 0x7D4063B84B50></code> | <code>the main power cable is not connected with LPT </code> | <code>the main power cable is not connected with LPT </code> |
223
+ | <code>the main power cable is connected with LPT </code> | <code>/content/sample_data/images/LPT (2).jpeg</code> | <code><PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=3024x4032 at 0x7D4063F4D190></code> | <code>the main power cable is connected with LPT </code> | <code>the main power cable is connected with LPT </code> |
224
+ | <code>the main power cable is connected with LPT </code> | <code>/content/sample_data/images/LPT (3).jpeg</code> | <code><PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=3024x4032 at 0x7D4063F4C7D0></code> | <code>the main power cable is connected with LPT </code> | <code>the main power cable is connected with LPT </code> |
225
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
226
+ ```json
227
+ {
228
+ "scale": 20.0,
229
+ "similarity_fct": "cos_sim"
230
+ }
231
+ ```
232
+
233
+ ### Training Hyperparameters
234
+ #### Non-Default Hyperparameters
235
+
236
+ - `eval_strategy`: epoch
237
+ - `per_device_train_batch_size`: 16
238
+ - `per_device_eval_batch_size`: 16
239
+ - `learning_rate`: 0.0001
240
+ - `num_train_epochs`: 2
241
+
242
+ #### All Hyperparameters
243
+ <details><summary>Click to expand</summary>
244
+
245
+ - `overwrite_output_dir`: False
246
+ - `do_predict`: False
247
+ - `eval_strategy`: epoch
248
+ - `prediction_loss_only`: True
249
+ - `per_device_train_batch_size`: 16
250
+ - `per_device_eval_batch_size`: 16
251
+ - `per_gpu_train_batch_size`: None
252
+ - `per_gpu_eval_batch_size`: None
253
+ - `gradient_accumulation_steps`: 1
254
+ - `eval_accumulation_steps`: None
255
+ - `torch_empty_cache_steps`: None
256
+ - `learning_rate`: 0.0001
257
+ - `weight_decay`: 0.0
258
+ - `adam_beta1`: 0.9
259
+ - `adam_beta2`: 0.999
260
+ - `adam_epsilon`: 1e-08
261
+ - `max_grad_norm`: 1.0
262
+ - `num_train_epochs`: 2
263
+ - `max_steps`: -1
264
+ - `lr_scheduler_type`: linear
265
+ - `lr_scheduler_kwargs`: {}
266
+ - `warmup_ratio`: 0.0
267
+ - `warmup_steps`: 0
268
+ - `log_level`: passive
269
+ - `log_level_replica`: warning
270
+ - `log_on_each_node`: True
271
+ - `logging_nan_inf_filter`: True
272
+ - `save_safetensors`: True
273
+ - `save_on_each_node`: False
274
+ - `save_only_model`: False
275
+ - `restore_callback_states_from_checkpoint`: False
276
+ - `no_cuda`: False
277
+ - `use_cpu`: False
278
+ - `use_mps_device`: False
279
+ - `seed`: 42
280
+ - `data_seed`: None
281
+ - `jit_mode_eval`: False
282
+ - `use_ipex`: False
283
+ - `bf16`: False
284
+ - `fp16`: False
285
+ - `fp16_opt_level`: O1
286
+ - `half_precision_backend`: auto
287
+ - `bf16_full_eval`: False
288
+ - `fp16_full_eval`: False
289
+ - `tf32`: None
290
+ - `local_rank`: 0
291
+ - `ddp_backend`: None
292
+ - `tpu_num_cores`: None
293
+ - `tpu_metrics_debug`: False
294
+ - `debug`: []
295
+ - `dataloader_drop_last`: False
296
+ - `dataloader_num_workers`: 0
297
+ - `dataloader_prefetch_factor`: None
298
+ - `past_index`: -1
299
+ - `disable_tqdm`: False
300
+ - `remove_unused_columns`: True
301
+ - `label_names`: None
302
+ - `load_best_model_at_end`: False
303
+ - `ignore_data_skip`: False
304
+ - `fsdp`: []
305
+ - `fsdp_min_num_params`: 0
306
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
307
+ - `fsdp_transformer_layer_cls_to_wrap`: None
308
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
309
+ - `deepspeed`: None
310
+ - `label_smoothing_factor`: 0.0
311
+ - `optim`: adamw_torch
312
+ - `optim_args`: None
313
+ - `adafactor`: False
314
+ - `group_by_length`: False
315
+ - `length_column_name`: length
316
+ - `ddp_find_unused_parameters`: None
317
+ - `ddp_bucket_cap_mb`: None
318
+ - `ddp_broadcast_buffers`: False
319
+ - `dataloader_pin_memory`: True
320
+ - `dataloader_persistent_workers`: False
321
+ - `skip_memory_metrics`: True
322
+ - `use_legacy_prediction_loop`: False
323
+ - `push_to_hub`: False
324
+ - `resume_from_checkpoint`: None
325
+ - `hub_model_id`: None
326
+ - `hub_strategy`: every_save
327
+ - `hub_private_repo`: None
328
+ - `hub_always_push`: False
329
+ - `gradient_checkpointing`: False
330
+ - `gradient_checkpointing_kwargs`: None
331
+ - `include_inputs_for_metrics`: False
332
+ - `include_for_metrics`: []
333
+ - `eval_do_concat_batches`: True
334
+ - `fp16_backend`: auto
335
+ - `push_to_hub_model_id`: None
336
+ - `push_to_hub_organization`: None
337
+ - `mp_parameters`:
338
+ - `auto_find_batch_size`: False
339
+ - `full_determinism`: False
340
+ - `torchdynamo`: None
341
+ - `ray_scope`: last
342
+ - `ddp_timeout`: 1800
343
+ - `torch_compile`: False
344
+ - `torch_compile_backend`: None
345
+ - `torch_compile_mode`: None
346
+ - `dispatch_batches`: None
347
+ - `split_batches`: None
348
+ - `include_tokens_per_second`: False
349
+ - `include_num_input_tokens_seen`: False
350
+ - `neftune_noise_alpha`: None
351
+ - `optim_target_modules`: None
352
+ - `batch_eval_metrics`: False
353
+ - `eval_on_start`: False
354
+ - `use_liger_kernel`: False
355
+ - `eval_use_gather_object`: False
356
+ - `average_tokens_across_devices`: False
357
+ - `prompts`: None
358
+ - `batch_sampler`: batch_sampler
359
+ - `multi_dataset_batch_sampler`: proportional
360
+
361
+ </details>
362
+
363
+ ### Training Logs
364
+ | Epoch | Step | Training Loss | Validation Loss | yt-title-thumbnail-train_cosine_accuracy | yt-title-thumbnail-validation_cosine_accuracy |
365
+ |:-----:|:----:|:-------------:|:---------------:|:----------------------------------------:|:---------------------------------------------:|
366
+ | -1 | -1 | - | - | 0.0 | 0.0 |
367
+ | 1.0 | 1 | 8.5381 | 7.5693 | - | - |
368
+ | 2.0 | 2 | 7.5693 | 7.1228 | - | - |
369
+
370
+
371
+ ### Framework Versions
372
+ - Python: 3.11.11
373
+ - Sentence Transformers: 3.4.1
374
+ - Transformers: 4.48.3
375
+ - PyTorch: 2.5.1+cu124
376
+ - Accelerate: 1.3.0
377
+ - Datasets: 3.3.2
378
+ - Tokenizers: 0.21.0
379
+
380
+ ## Citation
381
+
382
+ ### BibTeX
383
+
384
+ #### Sentence Transformers
385
+ ```bibtex
386
+ @inproceedings{reimers-2019-sentence-bert,
387
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
388
+ author = "Reimers, Nils and Gurevych, Iryna",
389
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
390
+ month = "11",
391
+ year = "2019",
392
+ publisher = "Association for Computational Linguistics",
393
+ url = "https://arxiv.org/abs/1908.10084",
394
+ }
395
+ ```
396
+
397
+ #### MultipleNegativesRankingLoss
398
+ ```bibtex
399
+ @misc{henderson2017efficient,
400
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
401
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
402
+ year={2017},
403
+ eprint={1705.00652},
404
+ archivePrefix={arXiv},
405
+ primaryClass={cs.CL}
406
+ }
407
+ ```
408
+
409
+ <!--
410
+ ## Glossary
411
+
412
+ *Clearly define terms in order to be accessible across audiences.*
413
+ -->
414
+
415
+ <!--
416
+ ## Model Card Authors
417
+
418
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
419
+ -->
420
+
421
+ <!--
422
+ ## Model Card Contact
423
+
424
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
425
+ -->
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/root/.cache/huggingface/hub/models--sentence-transformers--clip-ViT-L-14/snapshots/3b12140ad0f9750045e404f187cfccd04bcaf250/0_CLIPModel",
3
+ "architectures": [
4
+ "CLIPModel"
5
+ ],
6
+ "initializer_factor": 1.0,
7
+ "logit_scale_init_value": 2.6592,
8
+ "model_type": "clip",
9
+ "projection_dim": 768,
10
+ "text_config": {
11
+ "dropout": 0.0,
12
+ "hidden_size": 768,
13
+ "intermediate_size": 3072,
14
+ "model_type": "clip_text_model",
15
+ "num_attention_heads": 12
16
+ },
17
+ "torch_dtype": "float32",
18
+ "transformers_version": "4.48.3",
19
+ "vision_config": {
20
+ "dropout": 0.0,
21
+ "hidden_size": 1024,
22
+ "intermediate_size": 4096,
23
+ "model_type": "clip_vision_model",
24
+ "num_attention_heads": 16,
25
+ "num_hidden_layers": 24,
26
+ "patch_size": 14
27
+ }
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.48.3",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:90ffdd36f1d515660008a6e288ae6e9b51401ae65daadc06a86215ac360b8269
3
+ size 1710537716
modules.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.CLIPModel"
7
+ }
8
+ ]
preprocessor_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "crop_size": {
3
+ "height": 224,
4
+ "width": 224
5
+ },
6
+ "do_center_crop": true,
7
+ "do_convert_rgb": true,
8
+ "do_normalize": true,
9
+ "do_rescale": true,
10
+ "do_resize": true,
11
+ "image_mean": [
12
+ 0.48145466,
13
+ 0.4578275,
14
+ 0.40821073
15
+ ],
16
+ "image_processor_type": "CLIPImageProcessor",
17
+ "image_std": [
18
+ 0.26862954,
19
+ 0.26130258,
20
+ 0.27577711
21
+ ],
22
+ "processor_class": "CLIPProcessor",
23
+ "resample": 3,
24
+ "rescale_factor": 0.00392156862745098,
25
+ "size": {
26
+ "shortest_edge": 224
27
+ }
28
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|startoftext|>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|endoftext|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|endoftext|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<|endoftext|>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "49406": {
5
+ "content": "<|startoftext|>",
6
+ "lstrip": false,
7
+ "normalized": true,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "49407": {
13
+ "content": "<|endoftext|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ }
20
+ },
21
+ "bos_token": "<|startoftext|>",
22
+ "clean_up_tokenization_spaces": false,
23
+ "do_lower_case": true,
24
+ "eos_token": "<|endoftext|>",
25
+ "errors": "replace",
26
+ "extra_special_tokens": {},
27
+ "model_max_length": 77,
28
+ "pad_token": "<|endoftext|>",
29
+ "processor_class": "CLIPProcessor",
30
+ "tokenizer_class": "CLIPTokenizer",
31
+ "unk_token": "<|endoftext|>"
32
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff