madatnlp/kor-math-roberta-finetune

This model is a fine-tuned version of klue/roberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.3205
  • Validation Loss: 1.1407
  • Epoch: 26

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
  • training_precision: mixed_bfloat16

Training results

Train Loss Validation Loss Epoch
3.4242 2.0873 0
1.9159 1.6264 1
1.5933 1.4521 2
1.3806 1.3584 3
1.2487 1.2904 4
1.1464 1.2388 5
1.0552 1.2076 6
0.9889 1.1818 7
0.9118 1.1607 8
0.8459 1.1349 9
0.7838 1.1193 10
0.7389 1.1193 11
0.6864 1.1080 12
0.6495 1.1001 13
0.6103 1.1001 14
0.5795 1.0990 15
0.5436 1.0954 16
0.5136 1.0997 17
0.4906 1.0954 18
0.4565 1.1021 19
0.4347 1.1075 20
0.4131 1.1075 21
0.3924 1.1220 22
0.3741 1.1298 23
0.3549 1.1352 24
0.3395 1.1286 25
0.3205 1.1407 26

Framework versions

  • Transformers 4.18.0
  • TensorFlow 2.8.0
  • Datasets 2.1.0
  • Tokenizers 0.12.1
Downloads last month
8
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.