madatnlp/prefix-ket5-scratch

This model is a fine-tuned version of madatnlp/ke-t5-math-py on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.7214
  • Validation Loss: 0.8747
  • Epoch: 98

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'learning_rate': 1e-04, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Validation Loss Epoch
8.0101 5.1280 0
4.8040 3.6005 1
3.7550 2.8108 2
3.2740 2.6402 3
2.9682 2.3173 4
2.6871 2.1585 5
2.4782 2.0828 6
2.3507 1.9557 7
2.2131 1.8513 8
2.1235 1.6324 9
2.0157 1.6270 10
1.9722 1.6217 11
1.8733 1.5436 12
1.8680 1.5872 13
1.8365 1.6040 14
1.7528 1.5049 15
1.7411 1.4754 16
1.6733 1.4409 17
1.6544 1.4230 18
1.6271 1.4556 19
1.5658 1.3797 20
1.5774 1.3269 21
1.5150 1.3108 22
1.5057 1.3785 23
1.4605 1.3114 24
1.4702 1.2618 25
1.4220 1.2164 26
1.4194 1.2409 27
1.3942 1.2603 28
1.3921 1.3010 29
1.3645 1.1850 30
1.3336 1.1273 31
1.3499 1.1533 32
1.3022 1.1683 33
1.2990 1.1403 34
1.2876 1.1241 35
1.2479 1.0957 36
1.2441 1.1989 37
1.2464 1.1416 38
1.2353 1.0636 39
1.2152 1.1136 40
1.2212 1.0635 41
1.1892 1.0818 42
1.1959 1.1041 43
1.1957 1.0912 44
1.1542 1.0949 45
1.1403 1.1272 46
1.1396 1.1169 47
1.1149 1.0606 48
1.1238 1.0610 49
1.1246 1.0234 50
1.0971 0.9865 51
1.0883 1.0568 52
1.0774 1.0099 53
1.0581 1.0023 54
1.0680 1.0197 55
1.0682 0.9835 56
1.0390 0.9789 57
1.0480 1.0217 58
1.0273 0.9622 59
1.0062 1.0174 60
1.0088 0.9612 61
0.9909 0.9998 62
0.9821 1.0115 63
0.9752 0.9712 64
0.9816 0.9677 65
0.9569 0.9503 66
0.9521 1.0052 67
0.9384 0.9752 68
0.9468 0.9767 69
0.9241 1.0076 70
0.9211 0.9414 71
0.9166 1.0294 72
0.9044 0.9772 73
0.9025 0.9273 74
0.8909 1.0077 75
0.8831 0.9292 76
0.8702 0.9320 77
0.8644 0.9879 78
0.8599 0.9027 79
0.8434 0.9197 80
0.8561 0.9447 81
0.8330 0.9730 82
0.8328 0.9137 83
0.8221 0.9232 84
0.8166 0.9115 85
0.8025 0.9530 86
0.8070 0.9270 87
0.7968 0.8474 88
0.7880 0.9171 89
0.7834 0.8668 90
0.7786 0.9049 91
0.7595 0.9348 92
0.7573 0.8826 93
0.7505 0.8765 94
0.7474 0.9312 95
0.7386 0.9211 96
0.7490 0.9223 97
0.7214 0.8747 98

Framework versions

  • Transformers 4.18.0
  • TensorFlow 2.8.0
  • Datasets 2.2.1
  • Tokenizers 0.12.1
Downloads last month
11
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.