|
--- |
|
license: mit |
|
--- |
|
|
|
# 🍰 Tiny AutoEncoder for Stable Diffusion 3 |
|
|
|
[TAESD3](https://github.com/madebyollin/taesd) is very tiny autoencoder which uses the same "latent API" as Stable Diffusion 3's VAE. |
|
TAESD3 is useful for real-time previewing of the SD3 generation process. |
|
|
|
This repo contains `.safetensors` versions of the TAESD3 weights. |
|
|
|
## Using in 🧨 diffusers |
|
|
|
```python |
|
import torch |
|
from diffusers import StableDiffusion3Pipeline, AutoencoderTiny |
|
|
|
pipe = StableDiffusion3Pipeline.from_pretrained( |
|
"stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16 |
|
) |
|
pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taesd3", torch_dtype=torch.float16) |
|
pipe.vae.config.shift_factor = 0.0 |
|
pipe = pipe.to("cuda") |
|
|
|
prompt = "slice of delicious New York-style berry cheesecake" |
|
image = pipe(prompt, num_inference_steps=25).images[0] |
|
image.save("cheesecake.png") |
|
``` |
|
|
|
|
|
<img width=512 src=https://cdn-uploads.huggingface.co/production/uploads/630447d40547362a22a969a2/vxm-Ek_N9eMVurl5yf5Jz.png /> |
|
|