|
--- |
|
license: apache-2.0 |
|
base_model: facebook/wav2vec2-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: wave2vec2_capstone |
|
results: [] |
|
datasets: |
|
- mozilla-foundation/common_voice_16_1 |
|
language: |
|
- en |
|
- ca |
|
- rw |
|
- be |
|
- eo |
|
- de |
|
- fr |
|
- ka |
|
- es |
|
- lg |
|
- sw |
|
- fa |
|
- it |
|
- mh |
|
- zh |
|
- ba |
|
- ta |
|
- ru |
|
- eu |
|
- th |
|
- pt |
|
- pl |
|
- ja |
|
pipeline_tag: audio-classification |
|
--- |
|
|
|
|
|
# wave2vec2_capstone |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the common_voice_16_1 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2796 |
|
- Accuracy: 0.9400 |
|
- F1 score: 0.9399 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 9 |
|
- eval_batch_size: 9 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 12 |
|
- total_train_batch_size: 108 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 8 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 score | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:| |
|
| 0.8951 | 1.0 | 776 | 1.1617 | 0.6651 | 0.6607 | |
|
| 0.6608 | 2.0 | 1552 | 0.6345 | 0.8188 | 0.8188 | |
|
| 0.4426 | 3.0 | 2328 | 0.4792 | 0.8672 | 0.8677 | |
|
| 0.3576 | 4.0 | 3105 | 0.3826 | 0.8917 | 0.8929 | |
|
| 0.194 | 5.0 | 3881 | 0.3255 | 0.9125 | 0.9130 | |
|
| 0.1635 | 6.0 | 4657 | 0.2903 | 0.9208 | 0.9206 | |
|
| 0.0903 | 7.0 | 5433 | 0.2990 | 0.9300 | 0.9299 | |
|
| 0.0405 | 8.0 | 6208 | 0.2796 | 0.9400 | 0.9399 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.36.2 |
|
- Pytorch 2.1.2+cu121 |
|
- Datasets 2.16.0 |
|
- Tokenizers 0.15.0 |
|
|