File size: 3,921 Bytes
d93383a
 
03ce0dc
 
6b41909
 
03ce0dc
 
 
 
 
 
 
d93383a
 
7839753
d93383a
03ce0dc
 
d93383a
 
 
03ce0dc
 
 
 
 
 
 
d93383a
 
 
 
 
03ce0dc
 
 
 
d93383a
03ce0dc
 
d93383a
 
03ce0dc
 
 
d93383a
 
03ce0dc
 
 
d93383a
03ce0dc
 
d93383a
03ce0dc
 
d93383a
03ce0dc
 
 
d93383a
03ce0dc
8fc8fb1
436bcbb
d93383a
03ce0dc
 
 
 
 
 
 
d93383a
03ce0dc
 
d93383a
03ce0dc
 
 
 
 
d93383a
03ce0dc
7114df1
03ce0dc
d93383a
 
 
 
03ce0dc
 
07056c5
d93383a
 
03ce0dc
 
 
 
 
 
 
a1d3a07
03ce0dc
07056c5
03ce0dc
 
 
 
 
 
d93383a
 
 
03ce0dc
07056c5
03ce0dc
1b7fc03
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
---
library_name: transformers
tags:
- C/C++
- Code
- Vulnerability
- Detection
datasets:
- DetectVul/devign
language:
- en
base_model:
- microsoft/unixcoder-base
---

## UniXcoder for Code Vulnerability Detection

## Model Summary
This model is a fine-tuned version of **Microsoft's UniXcoder**, optimized for detecting vulnerabilities in C/C++ code. It is trained on the **DetectVul/devign** dataset and achieves **68.34% accuracy** with an **F1 score of 62.14%**. The model takes in a code snippet and classifies it as either **safe (0)** or **vulnerable (1)**.

## Model Details

- **Developed by:** [mahdin70(Mukit Mahdin)]
- **Finetuned from:** `microsoft/unixcoder-base`
- **Language(s):** English (for code comments & metadata), C/C++
- **License:** MIT
- **Task:** Code vulnerability detection
- **Dataset Used:** `DetectVul/devign`
- **Architecture:** Transformer-based sequence classification


## Uses

### Direct Use
This model can be used for **static code analysis**, security audits, and automatic vulnerability detection in software repositories. It is useful for:
- **Developers**: To analyze their code for potential security flaws.
- **Security Teams**: To scan repositories for known vulnerabilities.
- **Researchers**: To study vulnerability detection in AI-powered systems.

### Downstream Use
This model can be integrated into **IDE plugins**, **CI/CD pipelines**, or **security scanners** to provide real-time vulnerability detection.

### Out-of-Scope Use
- The model is **not meant to replace human security experts**.
- It may not generalize well to **languages other than C/C++**.
- False positives/negatives may occur due to dataset limitations.

## Bias, Risks, and Limitations
- **False Positives & False Negatives:** The model may flag safe code as vulnerable or miss actual vulnerabilities.
- **Limited to C/C++:** The model was trained on a dataset primarily composed of **C and C++ code**. It may not perform well on other languages.
- **Dataset Bias:** The training data may not cover all possible vulnerabilities.

### Recommendations
Users should **not rely solely on the model** for security assessments. Instead, it should be used alongside **manual code review and static analysis tools**.

## How to Get Started with the Model
Use the code below to load the model and run inference on a sample code snippet:

```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch

# Load the fine-tuned model
tokenizer = AutoTokenizer.from_pretrained("microsoft/unixcoder-base")
model = AutoModelForSequenceClassification.from_pretrained("mahdin70/unixcoder-code-vulnerability-detector")

# Sample code snippet
code_snippet = """
void process(char *input) {
    char buffer[50];
    strcpy(buffer, input); // Potential buffer overflow
}
"""

# Tokenize the input
inputs = tokenizer(code_snippet, return_tensors="pt", truncation=True, padding="max_length", max_length=512)

# Run inference
with torch.no_grad():
    outputs = model(**inputs)
    predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
    predicted_label = torch.argmax(predictions, dim=1).item()

# Output the result
print("Vulnerable Code" if predicted_label == 1 else "Safe Code")
```

## Training Details

### Training Data
- **Dataset:** `DetectVul/devign`
- **Classes:** `0 (Safe)`, `1 (Vulnerable)`
- **Size:** 17483 code snippets

### Training Procedure
- **Optimizer:** AdamW
- **Loss Function:** Cross-Entropy Loss
- **Batch Size:** 8
- **Learning Rate:** 2e-5
- **Epochs:** 3
- **Hardware Used:** 2x T4 GPU

### Metrics
| Metric  | Score |
|------------|-------------|
| **Train Loss** | 0.4835 |
| **Evaluation Loss** | 0.6855 |
| **Accuracy** | 68.34% |
| **F1 Score** | 62.14% |
| **Precision** | 69.18% |
| **Recall** | 56.40% |

## Environmental Impact

| Factor  | Value |
|-----------|----------|
| **GPU Used** | 2x T4 GPU |
| **Training Time** | ~1 hour |