metadata
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: malay-patel/bert-finetuned-squad-nq
results: []
malay-patel/bert-finetuned-squad-nq
This model is a fine-tuned version of nlpconnect/roberta-base-squad2-nq on the SubjQA dataset.
It achieves the following results on the evaluation set:
- Train Loss: 1.5461
- Train End Logits Accuracy: 0.6253
- Train Start Logits Accuracy: 0.6120
- Epoch: 2
Intended uses & limitations
The intent of publishing this model is to improve the performance of question answering model, with the subjectivity of questions/ answers being the prime objective.
Training and evaluation data
Training Data: SQuAD 2.0 + Natural Questions + SubjQA Evaluation Data: SubjQA
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 861, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: mixed_float16
Training results
Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Epoch |
---|---|---|---|
1.5548 | 0.6236 | 0.6172 | 0 |
1.5423 | 0.6286 | 0.6192 | 1 |
1.5461 | 0.6253 | 0.6120 | 2 |
Framework versions
- Transformers 4.24.0
- TensorFlow 2.9.2
- Datasets 2.7.1
- Tokenizers 0.13.2