sushant-joshi's picture
revise the readme
fed08cc
|
raw
history blame
1.98 kB
metadata
license: apache-2.0
tags:
  - generated_from_keras_callback
model-index:
  - name: malay-patel/bert-finetuned-squad-nq
    results: []

malay-patel/bert-finetuned-squad-nq

This model is a fine-tuned version of nlpconnect/roberta-base-squad2-nq on the SubjQA dataset.

It achieves the following results on the evaluation set:

  • Train Loss: 1.5461
  • Train End Logits Accuracy: 0.6253
  • Train Start Logits Accuracy: 0.6120
  • Epoch: 2

Intended uses & limitations

The intent of publishing this model is to improve the performance of question answering model, with the subjectivity of questions/ answers being the prime objective.

Training and evaluation data

Training Data: SQuAD 2.0 + Natural Questions + SubjQA Evaluation Data: SubjQA

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 861, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
  • training_precision: mixed_float16

Training results

Train Loss Train End Logits Accuracy Train Start Logits Accuracy Epoch
1.5548 0.6236 0.6172 0
1.5423 0.6286 0.6192 1
1.5461 0.6253 0.6120 2

Framework versions

  • Transformers 4.24.0
  • TensorFlow 2.9.2
  • Datasets 2.7.1
  • Tokenizers 0.13.2