mallikrao2/qa-finetuned-swag

This model is a fine-tuned version of mallikrao2/sQuad_bertmodel1_ on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.0020
  • Train Accuracy: 0.9994
  • Validation Loss: 1.9750
  • Validation Accuracy: 0.7508
  • Epoch: 19

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 66860, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Train Accuracy Validation Loss Validation Accuracy Epoch
0.8405 0.6630 0.6156 0.7596 0
0.4697 0.8233 0.6102 0.7643 1
0.2479 0.9087 0.7102 0.7573 2
0.1571 0.9439 0.8434 0.7482 3
0.1139 0.9599 1.0923 0.7453 4
0.0881 0.9698 1.0614 0.7421 5
0.0705 0.9758 1.1311 0.7412 6
0.0577 0.9802 1.1761 0.7387 7
0.0453 0.9845 1.3310 0.7446 8
0.0379 0.9869 1.3076 0.7361 9
0.0301 0.9898 1.3147 0.7434 10
0.0228 0.9923 1.6641 0.7388 11
0.0195 0.9932 1.6168 0.7397 12
0.0165 0.9948 1.6042 0.7458 13
0.0118 0.9960 1.6922 0.7426 14
0.0098 0.9970 1.7052 0.7449 15
0.0059 0.9982 1.8137 0.7453 16
0.0040 0.9986 1.9369 0.7504 17
0.0032 0.9991 1.9089 0.7498 18
0.0020 0.9994 1.9750 0.7508 19

Framework versions

  • Transformers 4.29.2
  • TensorFlow 2.8.0
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
1
Inference API
Inference API (serverless) does not yet support transformers models for this pipeline type.