Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: unsloth/Meta-Llama-3.1-8B
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 42f29aa1081f3ecf_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/42f29aa1081f3ecf_train_data.json
  type:
    field_input: ''
    field_instruction: question
    field_output: solution
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 256
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: mamung/1355dce2-b8ea-4e55-b74b-f351210a8d41
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.00015
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 5
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
- gate_proj
- down_proj
- up_proj
lr_scheduler: cosine
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/42f29aa1081f3ecf_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
  adam_beta1: 0.9
  adam_beta2: 0.95
  adam_epsilon: 2.0e-05
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.1
wandb_entity: eddysang
wandb_mode: online
wandb_name: cb03b253-f222-4294-9b58-720f3e1ed129
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: cb03b253-f222-4294-9b58-720f3e1ed129
warmup_steps: 20
weight_decay: 0.02
xformers_attention: false

1355dce2-b8ea-4e55-b74b-f351210a8d41

This model is a fine-tuned version of unsloth/Meta-Llama-3.1-8B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: nan

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.00015
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=2e-05
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 20
  • training_steps: 100

Training results

Training Loss Epoch Step Validation Loss
No log 0.0002 1 nan
0.0 0.0019 9 nan
0.0 0.0039 18 nan
0.0 0.0058 27 nan
0.0 0.0078 36 nan
0.0 0.0097 45 nan
0.0 0.0117 54 nan
0.0 0.0136 63 nan
0.0 0.0155 72 nan
0.0 0.0175 81 nan
0.0 0.0194 90 nan
0.0 0.0214 99 nan

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
10
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for mamung/1355dce2-b8ea-4e55-b74b-f351210a8d41

Adapter
(298)
this model