Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: NousResearch/Yarn-Llama-2-13b-64k
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - ef2cecf84b8c2608_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/ef2cecf84b8c2608_train_data.json
  type:
    field_input: "\uC870"
    field_instruction: "\uBC95\uB960"
    field_output: "\uB0B4\uC6A9"
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 256
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 32
gradient_checkpointing: true
group_by_length: false
hub_model_id: mamung/3e5c5bbc-36ba-4d76-a8bd-a24e29b41f4c
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 3
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
lr_scheduler: cosine
max_grad_norm: 2
max_steps: 100
micro_batch_size: 2
mlflow_experiment_name: /tmp/ef2cecf84b8c2608_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
  adam_beta1: 0.9
  adam_beta2: 0.95
  adam_epsilon: 1.0e-05
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 2048
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: eddysang
wandb_mode: online
wandb_name: 5287fbce-0b61-4ea7-8f6c-f5189419a3ee
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 5287fbce-0b61-4ea7-8f6c-f5189419a3ee
warmup_steps: 20
weight_decay: 0.02
xformers_attention: false

3e5c5bbc-36ba-4d76-a8bd-a24e29b41f4c

This model is a fine-tuned version of NousResearch/Yarn-Llama-2-13b-64k on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6538

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 32
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-05
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 20
  • training_steps: 100

Training results

Training Loss Epoch Step Validation Loss
No log 0.0001 1 1.0763
28.7565 0.0012 9 0.8550
24.9144 0.0024 18 0.7634
23.3711 0.0037 27 0.7247
22.3049 0.0049 36 0.7020
22.2046 0.0061 45 0.6883
22.1521 0.0073 54 0.6776
21.1586 0.0085 63 0.6682
20.5567 0.0098 72 0.6621
21.0529 0.0110 81 0.6574
21.0844 0.0122 90 0.6544
20.5923 0.0134 99 0.6538

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
2
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for mamung/3e5c5bbc-36ba-4d76-a8bd-a24e29b41f4c

Adapter
(180)
this model