Wav2Vec2-Large-XLSR-53-German
Fine-tuned facebook/wav2vec2-large-xlsr-53 on German using 3% of the Common Voice dataset. When using this model, make sure that your speech input is sampled at 16kHz.
Usage
The model can be used directly (without a language model) as follows:
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "de", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("marcel/wav2vec2-large-xlsr-german-demo")
model = Wav2Vec2ForCTC.from_pretrained("marcel/wav2vec2-large-xlsr-german-demo")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
Evaluation
The model can be evaluated as follows on the {language} test data of Common Voice.
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "de", split="test[:10%]")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("marcel/wav2vec2-large-xlsr-german-demo")
model = Wav2Vec2ForCTC.from_pretrained("marcel/wav2vec2-large-xlsr-german-demo")
model.to("cuda")
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\”\�\カ\æ\無\ན\カ\臣\ѹ\…\«\»\ð\ı\„\幺\א\ב\比\ш\ע\)\ứ\в\œ\ч\+\—\ш\‚\נ\м\ń\乡\$\=\ש\ф\支\(\°\и\к\̇]'
substitutions = {
'e' : '[\ə\é\ě\ę\ê\ế\ế\ë\ė\е]',
'o' : '[\ō\ô\ô\ó\ò\ø\ọ\ŏ\õ\ő\о]',
'a' : '[\á\ā\ā\ă\ã\å\â\à\ą\а]',
'c' : '[\č\ć\ç\с]',
'l' : '[\ł]',
'u' : '[\ú\ū\ứ\ů]',
'und' : '[\&]',
'r' : '[\ř]',
'y' : '[\ý]',
's' : '[\ś\š\ș\ş]',
'i' : '[\ī\ǐ\í\ï\î\ï]',
'z' : '[\ź\ž\ź\ż]',
'n' : '[\ñ\ń\ņ]',
'g' : '[\ğ]',
'ss' : '[\ß]',
't' : '[\ț\ť]',
'd' : '[\ď\đ]',
"'": '[\ʿ\་\’\`\´\ʻ\`\‘]',
'p': '\р'
}
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
for x in substitutions:
batch["sentence"] = re.sub(substitutions[x], x, batch["sentence"])
speech_array, sampling_rate = torchaudio.load(batch["path"])
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
Test Result: 29.35 %
Training
The first 3% of the Common Voice train
, validation
datasets were used for training.
The script used for training can be found TODO
- Downloads last month
- 30
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.