Description

scVI model trained on the full DLPFC Visium data (including the pilot samples).

Model properties

Many model properties are in the model tags. Some more are listed below.

model_init_params:

{
    "n_hidden": 128,
    "n_latent": 5,
    "n_layers": 1,
    "dropout_rate": 0.1,
    "dispersion": "gene",
    "gene_likelihood": "zinb",
    "latent_distribution": "normal"
}

model_setup_anndata_args:

{
    "layer": "counts",
    "batch_key": "patient",
    "labels_key": null,
    "size_factor_key": null,
    "categorical_covariate_keys": [
        "sample",
        "study"
    ],
    "continuous_covariate_keys": null
}

model_summary_stats:

Summary Stat Key Value
n_batch 13
n_cells 166443
n_extra_categorical_covs 2
n_extra_continuous_covs 0
n_labels 1
n_vars 5000

model_data_registry:

Registry Key scvi-tools Location
X adata.layers['counts']
batch adata.obs['_scvi_batch']
extra_categorical_covs adata.obsm['_scvi_extra_categorical_covs']
labels adata.obs['_scvi_labels']

model_parent_module: scvi.model

data_is_minified: False

Training data

This is an optional link to where the training data is stored if it is too large to host on the huggingface Model hub.

Training data url: N/A

Training code

This is an optional link to the code used to train the model.

Training code url: N/A

References

  1. Maynard, Kristen R., et al. "Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex." Nature neuroscience 24.3 (2021): 425-436.
  2. Huuki-Myers, Louise A., et al. "Integrated single cell and unsupervised spatial transcriptomic analysis defines molecular anatomy of the human dorsolateral prefrontal cortex." BioRxiv (2023): 2023-02.
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model’s pipeline type. Check the docs .