icefall-libri-giga-pruned-transducer-stateless7-streaming-6M-2023-04-03 / decoding-results /greedy_search /log-decode-epoch-30-avg-1-context-2-max-sym-per-frame-1-use-averaged-model-2023-03-21-12-56-33
marcoyang's picture
initial commit
1b29fff
2023-03-21 12:56:33,933 INFO [decode.py:690] Decoding started
2023-03-21 12:56:33,934 INFO [decode.py:696] Device: cuda:0
2023-03-21 12:56:33,936 INFO [decode.py:706] {'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 50, 'reset_interval': 200, 'valid_interval': 3000, 'feature_dim': 80, 'subsampling_factor': 4, 'warm_step': 2000, 'env_info': {'k2-version': '1.22', 'k2-build-type': 'Release', 'k2-with-cuda': True, 'k2-git-sha1': '96c9a2aece2a3a7633da07740e24fa3d96f5498c', 'k2-git-date': 'Thu Nov 10 08:14:02 2022', 'lhotse-version': '1.13.0.dev+git.527d964.clean', 'torch-version': '1.12.1', 'torch-cuda-available': True, 'torch-cuda-version': '11.6', 'python-version': '3.8', 'icefall-git-branch': 'zipformer_libri_small_models', 'icefall-git-sha1': 'd3145cd-dirty', 'icefall-git-date': 'Thu Feb 16 15:24:55 2023', 'icefall-path': '/ceph-data4/yangxiaoyu/softwares/icefall_development/icefall_small_models', 'k2-path': '/ceph-data4/yangxiaoyu/softwares/anaconda3/envs/k2_latest/lib/python3.8/site-packages/k2/__init__.py', 'lhotse-path': '/ceph-data4/yangxiaoyu/softwares/lhotse_development/lhotse_random_padding_left/lhotse/__init__.py', 'hostname': 'de-74279-k2-train-10-0221105906-5745685d6b-t8zzx', 'IP address': '10.177.57.19'}, 'epoch': 30, 'iter': 0, 'avg': 1, 'use_averaged_model': True, 'exp_dir': PosixPath('pruned_transducer_stateless7_streaming_multi/exp-small-6M'), 'bpe_model': 'data/lang_bpe_500/bpe.model', 'lang_dir': PosixPath('data/lang_bpe_500'), 'decoding_method': 'greedy_search', 'beam_size': 4, 'beam': 20.0, 'ngram_lm_scale': 0.01, 'max_contexts': 8, 'max_states': 64, 'context_size': 2, 'max_sym_per_frame': 1, 'num_paths': 200, 'nbest_scale': 0.5, 'simulate_streaming': False, 'decode_chunk_size': 16, 'left_context': 64, 'num_encoder_layers': '2,2,2,2,2', 'feedforward_dims': '256,256,512,512,256', 'nhead': '4,4,4,4,4', 'encoder_dims': '128,128,128,128,128', 'attention_dims': '96,96,96,96,96', 'encoder_unmasked_dims': '96,96,96,96,96', 'zipformer_downsampling_factors': '1,2,4,8,2', 'cnn_module_kernels': '31,31,31,31,31', 'decoder_dim': 512, 'joiner_dim': 512, 'short_chunk_size': 50, 'num_left_chunks': 4, 'decode_chunk_len': 32, 'max_duration': 600, 'bucketing_sampler': True, 'num_buckets': 30, 'shuffle': True, 'return_cuts': True, 'num_workers': 2, 'on_the_fly_num_workers': 0, 'enable_spec_aug': True, 'spec_aug_time_warp_factor': 80, 'enable_musan': True, 'manifest_dir': PosixPath('data/fbank'), 'on_the_fly_feats': False, 'res_dir': PosixPath('pruned_transducer_stateless7_streaming_multi/exp-small-6M/greedy_search'), 'suffix': 'epoch-30-avg-1-context-2-max-sym-per-frame-1-use-averaged-model', 'blank_id': 0, 'unk_id': 2, 'vocab_size': 500}
2023-03-21 12:56:33,936 INFO [decode.py:708] About to create model
2023-03-21 12:56:34,079 INFO [zipformer.py:405] At encoder stack 4, which has downsampling_factor=2, we will combine the outputs of layers 1 and 3, with downsampling_factors=2 and 8.
2023-03-21 12:56:34,087 INFO [train.py:536] Use giga
2023-03-21 12:56:34,090 INFO [decode.py:779] Calculating the averaged model over epoch range from 29 (excluded) to 30
2023-03-21 12:56:36,457 INFO [decode.py:813] Number of model parameters: 6061029
2023-03-21 12:56:36,457 INFO [librispeech.py:58] About to get test-clean cuts from data/fbank/librispeech_cuts_test-clean.jsonl.gz
2023-03-21 12:56:36,458 INFO [librispeech.py:63] About to get test-other cuts from data/fbank/librispeech_cuts_test-other.jsonl.gz
2023-03-21 12:56:40,212 INFO [decode.py:592] batch 0/?, cuts processed until now is 26
2023-03-21 12:57:18,846 INFO [decode.py:592] batch 50/?, cuts processed until now is 2526
2023-03-21 12:57:22,546 INFO [decode.py:608] The transcripts are stored in pruned_transducer_stateless7_streaming_multi/exp-small-6M/greedy_search/recogs-test-clean-greedy_search-epoch-30-avg-1-context-2-max-sym-per-frame-1-use-averaged-model.txt
2023-03-21 12:57:22,645 INFO [utils.py:558] [test-clean-greedy_search] %WER 6.04% [3173 / 52576, 340 ins, 306 del, 2527 sub ]
2023-03-21 12:57:22,851 INFO [decode.py:621] Wrote detailed error stats to pruned_transducer_stateless7_streaming_multi/exp-small-6M/greedy_search/errs-test-clean-greedy_search-epoch-30-avg-1-context-2-max-sym-per-frame-1-use-averaged-model.txt
2023-03-21 12:57:22,866 INFO [decode.py:637]
For test-clean, WER of different settings are:
greedy_search 6.04 best for test-clean
2023-03-21 12:57:24,870 INFO [decode.py:592] batch 0/?, cuts processed until now is 30
2023-03-21 12:57:29,066 INFO [zipformer.py:2441] attn_weights_entropy = tensor([1.3041, 1.5690, 1.5069, 1.2777], device='cuda:0'), covar=tensor([0.2984, 0.2516, 0.1772, 0.2404], device='cuda:0'), in_proj_covar=tensor([0.2077, 0.2042, 0.1947, 0.2094], device='cuda:0'), out_proj_covar=tensor([0.0002, 0.0002, 0.0002, 0.0002], device='cuda:0')
2023-03-21 12:57:56,255 INFO [zipformer.py:2441] attn_weights_entropy = tensor([1.2700, 1.9217, 1.5033, 0.4634], device='cuda:0'), covar=tensor([0.4861, 0.3328, 0.4618, 0.7099], device='cuda:0'), in_proj_covar=tensor([0.1863, 0.1746, 0.1668, 0.1515], device='cuda:0'), out_proj_covar=tensor([0.0005, 0.0005, 0.0004, 0.0004], device='cuda:0')
2023-03-21 12:57:59,184 INFO [decode.py:592] batch 50/?, cuts processed until now is 2840
2023-03-21 12:58:02,446 INFO [decode.py:608] The transcripts are stored in pruned_transducer_stateless7_streaming_multi/exp-small-6M/greedy_search/recogs-test-other-greedy_search-epoch-30-avg-1-context-2-max-sym-per-frame-1-use-averaged-model.txt
2023-03-21 12:58:02,551 INFO [utils.py:558] [test-other-greedy_search] %WER 15.06% [7882 / 52343, 827 ins, 900 del, 6155 sub ]
2023-03-21 12:58:02,776 INFO [decode.py:621] Wrote detailed error stats to pruned_transducer_stateless7_streaming_multi/exp-small-6M/greedy_search/errs-test-other-greedy_search-epoch-30-avg-1-context-2-max-sym-per-frame-1-use-averaged-model.txt
2023-03-21 12:58:02,776 INFO [decode.py:637]
For test-other, WER of different settings are:
greedy_search 15.06 best for test-other
2023-03-21 12:58:02,777 INFO [decode.py:845] Done!