distilbert-base-uncased-lora-text-classification

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8517
  • Accuracy: {'accuracy': 0.894}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 250 0.3695 {'accuracy': 0.885}
0.4384 2.0 500 0.4139 {'accuracy': 0.873}
0.4384 3.0 750 0.5319 {'accuracy': 0.894}
0.1996 4.0 1000 0.6325 {'accuracy': 0.891}
0.1996 5.0 1250 0.7468 {'accuracy': 0.89}
0.0559 6.0 1500 0.8431 {'accuracy': 0.893}
0.0559 7.0 1750 0.8182 {'accuracy': 0.895}
0.0256 8.0 2000 0.8403 {'accuracy': 0.893}
0.0256 9.0 2250 0.8637 {'accuracy': 0.896}
0.0126 10.0 2500 0.8517 {'accuracy': 0.894}

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.3
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for margauxsingap/distilbert-base-uncased-lora-text-classification

Adapter
(228)
this model