|
--- |
|
license: mit |
|
base_model: microsoft/deberta-v3-small |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- recall |
|
- precision |
|
model-index: |
|
- name: deberta-v3-small-finetuned-ner-2048 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# deberta-v3-small-finetuned-ner-2048 |
|
|
|
This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0036 |
|
- Recall: 0.9920 |
|
- Precision: 0.9866 |
|
- Fbeta Score: 0.9918 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 4 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Recall | Precision | Fbeta Score | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:|:---------:|:-----------:| |
|
| 0.0085 | 1.0 | 3186 | 0.0058 | 0.9786 | 0.9693 | 0.9782 | |
|
| 0.0032 | 2.0 | 6373 | 0.0036 | 0.9869 | 0.9764 | 0.9865 | |
|
| 0.004 | 3.0 | 9559 | 0.0037 | 0.9791 | 0.9892 | 0.9795 | |
|
| 0.0014 | 4.0 | 12746 | 0.0035 | 0.9908 | 0.9817 | 0.9905 | |
|
| 0.0019 | 5.0 | 15932 | 0.0038 | 0.9903 | 0.9806 | 0.9899 | |
|
| 0.0022 | 6.0 | 19119 | 0.0032 | 0.9929 | 0.9861 | 0.9927 | |
|
| 0.0005 | 7.0 | 22305 | 0.0031 | 0.9906 | 0.9894 | 0.9905 | |
|
| 0.0003 | 8.0 | 25492 | 0.0033 | 0.9915 | 0.9855 | 0.9913 | |
|
| 0.0001 | 9.0 | 28678 | 0.0036 | 0.9920 | 0.9866 | 0.9918 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.39.3 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|