marthakk's picture
End of training
ac216f6 verified
|
raw
history blame
3.13 kB
metadata
library_name: transformers
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: swin-tiny-patch4-window7-224-finetuned-eurosat
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9714285714285714
          - name: Precision
            type: precision
            value: 0.9696825396825397
          - name: Recall
            type: recall
            value: 0.9714285714285714
          - name: F1
            type: f1
            value: 0.9695078031212484

swin-tiny-patch4-window7-224-finetuned-eurosat

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0814
  • Accuracy: 0.9714
  • Precision: 0.9697
  • Recall: 0.9714
  • F1: 0.9695

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.2262 0.9888 22 0.2061 0.9365 0.8770 0.9365 0.9058
0.1666 1.9775 44 0.1274 0.9333 0.8769 0.9333 0.9042
0.1168 2.9663 66 0.1054 0.9524 0.9461 0.9524 0.9438
0.0984 4.0 89 0.0824 0.9619 0.9591 0.9619 0.9599
0.1028 4.9888 111 0.0814 0.9714 0.9697 0.9714 0.9695
0.1082 5.9775 133 0.0835 0.9492 0.9518 0.9492 0.9329
0.0962 6.9663 155 0.0872 0.9587 0.9578 0.9587 0.9582
0.0799 8.0 178 0.0803 0.9587 0.9543 0.9587 0.9546
0.0954 8.9888 200 0.0685 0.9619 0.9584 0.9619 0.9587
0.0771 9.8876 220 0.0711 0.9619 0.9584 0.9619 0.9587

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.5.0+cu121
  • Datasets 3.0.2
  • Tokenizers 0.19.1