|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: microsoft/swin-tiny-patch4-window7-224 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: swin-tiny-patch4-window7-224-finetuned-eurosat |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9619047619047619 |
|
- name: Precision |
|
type: precision |
|
value: 0.9583926593893372 |
|
- name: Recall |
|
type: recall |
|
value: 0.9619047619047619 |
|
- name: F1 |
|
type: f1 |
|
value: 0.9587351719211175 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# swin-tiny-patch4-window7-224-finetuned-eurosat |
|
|
|
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0711 |
|
- Accuracy: 0.9619 |
|
- Precision: 0.9584 |
|
- Recall: 0.9619 |
|
- F1: 0.9587 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| 0.2262 | 0.9888 | 22 | 0.2061 | 0.9365 | 0.8770 | 0.9365 | 0.9058 | |
|
| 0.1666 | 1.9775 | 44 | 0.1274 | 0.9333 | 0.8769 | 0.9333 | 0.9042 | |
|
| 0.1168 | 2.9663 | 66 | 0.1054 | 0.9524 | 0.9461 | 0.9524 | 0.9438 | |
|
| 0.0984 | 4.0 | 89 | 0.0824 | 0.9619 | 0.9591 | 0.9619 | 0.9599 | |
|
| 0.1028 | 4.9888 | 111 | 0.0814 | 0.9714 | 0.9697 | 0.9714 | 0.9695 | |
|
| 0.1082 | 5.9775 | 133 | 0.0835 | 0.9492 | 0.9518 | 0.9492 | 0.9329 | |
|
| 0.0962 | 6.9663 | 155 | 0.0872 | 0.9587 | 0.9578 | 0.9587 | 0.9582 | |
|
| 0.0799 | 8.0 | 178 | 0.0803 | 0.9587 | 0.9543 | 0.9587 | 0.9546 | |
|
| 0.0954 | 8.9888 | 200 | 0.0685 | 0.9619 | 0.9584 | 0.9619 | 0.9587 | |
|
| 0.0771 | 9.8876 | 220 | 0.0711 | 0.9619 | 0.9584 | 0.9619 | 0.9587 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.5.0+cu121 |
|
- Datasets 3.0.2 |
|
- Tokenizers 0.19.1 |
|
|