File size: 16,037 Bytes
fd9d93f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
---
library_name: sklearn
tags:
- sklearn
- skops
- tabular-classification
model_format: skops
model_file: clf.skops
widget:
- structuredData:
x0:
- 25.861774444580078
- 13.925846099853516
- 18.626529693603516
x1:
- -9.131807327270508
- -9.77347183227539
- -9.504095077514648
x10:
- 1.9384498596191406
- 2.884918212890625
- 2.2260468006134033
x11:
- 3.0784831047058105
- 3.9418864250183105
- 4.06421422958374
x12:
- 2.991974353790283
- 2.9264330863952637
- 2.5255069732666016
x13:
- 2.345289707183838
- 2.3997442722320557
- 2.200080394744873
x14:
- 1.7882720232009888
- 1.840790867805481
- 1.383643388748169
x15:
- 1.6710506677627563
- 1.2678987979888916
- 0.47583726048469543
x16:
- 1.840790867805481
- 1.7882720232009888
- 1.0316907167434692
x17:
- 2.3997442722320557
- 2.345289707183838
- 1.8518061637878418
x18:
- 1.380855917930603
- 1.2926031351089478
- 1.0395294427871704
x19:
- 1.241168737411499
- 1.126420021057129
- 0.8134236931800842
x2:
- 4.62739896774292
- 5.171527862548828
- 4.921814441680908
x20:
- 0.9832149744033813
- 0.8152679800987244
- 0.38093870878219604
x21:
- 0.8598455786705017
- 0.6651478409767151
- 0.17098481953144073
x22:
- 0.9832149744033813
- 0.8152679800987244
- 0.38093870878219604
x23:
- 1.241168737411499
- 1.126420021057129
- 0.8134236931800842
x24:
- 2.725480556488037
- 3.022055149078369
- 3.3232314586639404
x25:
- 1.8365917205810547
- 2.0849626064300537
- 2.1735572814941406
x26:
- 1.22439444065094
- 1.251629114151001
- 1.4565647840499878
x3:
- 0.15449941158294678
- 0.03677806630730629
- 0.07167093455791473
x4:
- -0.024682553485035896
- -0.02837284840643406
- -0.029335789382457733
x5:
- -0.5647724866867065
- -0.19825565814971924
- -0.3138836622238159
x6:
- 4.030393123626709
- 5.093674182891846
- 5.913875102996826
x7:
- 3.9418864250183105
- 3.0784831047058105
- 3.5550312995910645
x8:
- 2.884918212890625
- 1.9384498596191406
- 1.8467140197753906
x9:
- 1.4331213235855103
- 1.9454820156097412
- 0.7261717319488525
---
# Model description
LightGBM classifier of tree/non-tree pixels from aerial imagery trained on Zurich's Orthofoto Sommer 2014/15 using detectree.
## Intended uses & limitations
Segment tree/non-tree pixels from aerial imagery
## Training Procedure
[More Information Needed]
### Hyperparameters
<details>
<summary> Click to expand </summary>
| Hyperparameter | Value |
|-------------------|---------|
| boosting_type | gbdt |
| class_weight | |
| colsample_bytree | 1.0 |
| importance_type | split |
| learning_rate | 0.1 |
| max_depth | -1 |
| min_child_samples | 20 |
| min_child_weight | 0.001 |
| min_split_gain | 0.0 |
| n_estimators | 200 |
| n_jobs | |
| num_leaves | 31 |
| objective | |
| random_state | |
| reg_alpha | 0.0 |
| reg_lambda | 0.0 |
| subsample | 1.0 |
| subsample_for_bin | 200000 |
| subsample_freq | 0 |
</details>
### Model Plot
<style>#sk-container-id-15 {/* Definition of color scheme common for light and dark mode */--sklearn-color-text: black;--sklearn-color-line: gray;/* Definition of color scheme for unfitted estimators */--sklearn-color-unfitted-level-0: #fff5e6;--sklearn-color-unfitted-level-1: #f6e4d2;--sklearn-color-unfitted-level-2: #ffe0b3;--sklearn-color-unfitted-level-3: chocolate;/* Definition of color scheme for fitted estimators */--sklearn-color-fitted-level-0: #f0f8ff;--sklearn-color-fitted-level-1: #d4ebff;--sklearn-color-fitted-level-2: #b3dbfd;--sklearn-color-fitted-level-3: cornflowerblue;/* Specific color for light theme */--sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));--sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, white)));--sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));--sklearn-color-icon: #696969;@media (prefers-color-scheme: dark) {/* Redefinition of color scheme for dark theme */--sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));--sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, #111)));--sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));--sklearn-color-icon: #878787;}
}#sk-container-id-15 {color: var(--sklearn-color-text);
}#sk-container-id-15 pre {padding: 0;
}#sk-container-id-15 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;
}#sk-container-id-15 div.sk-dashed-wrapped {border: 1px dashed var(--sklearn-color-line);margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: var(--sklearn-color-background);
}#sk-container-id-15 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }`but bootstrap.min.css set `[hidden] { display: none !important; }`so we also need the `!important` here to be able to override thedefault hidden behavior on the sphinx rendered scikit-learn.org.See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;
}#sk-container-id-15 div.sk-text-repr-fallback {display: none;
}div.sk-parallel-item,
div.sk-serial,
div.sk-item {/* draw centered vertical line to link estimators */background-image: linear-gradient(var(--sklearn-color-text-on-default-background), var(--sklearn-color-text-on-default-background));background-size: 2px 100%;background-repeat: no-repeat;background-position: center center;
}/* Parallel-specific style estimator block */#sk-container-id-15 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 2px solid var(--sklearn-color-text-on-default-background);flex-grow: 1;
}#sk-container-id-15 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: var(--sklearn-color-background);position: relative;
}#sk-container-id-15 div.sk-parallel-item {display: flex;flex-direction: column;
}#sk-container-id-15 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;
}#sk-container-id-15 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;
}#sk-container-id-15 div.sk-parallel-item:only-child::after {width: 0;
}/* Serial-specific style estimator block */#sk-container-id-15 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: var(--sklearn-color-background);padding-right: 1em;padding-left: 1em;
}/* Toggleable style: style used for estimator/Pipeline/ColumnTransformer box that is
clickable and can be expanded/collapsed.
- Pipeline and ColumnTransformer use this feature and define the default style
- Estimators will overwrite some part of the style using the `sk-estimator` class
*//* Pipeline and ColumnTransformer style (default) */#sk-container-id-15 div.sk-toggleable {/* Default theme specific background. It is overwritten whether we have aspecific estimator or a Pipeline/ColumnTransformer */background-color: var(--sklearn-color-background);
}/* Toggleable label */
#sk-container-id-15 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.5em;box-sizing: border-box;text-align: center;
}#sk-container-id-15 label.sk-toggleable__label-arrow:before {/* Arrow on the left of the label */content: "▸";float: left;margin-right: 0.25em;color: var(--sklearn-color-icon);
}#sk-container-id-15 label.sk-toggleable__label-arrow:hover:before {color: var(--sklearn-color-text);
}/* Toggleable content - dropdown */#sk-container-id-15 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;/* unfitted */background-color: var(--sklearn-color-unfitted-level-0);
}#sk-container-id-15 div.sk-toggleable__content.fitted {/* fitted */background-color: var(--sklearn-color-fitted-level-0);
}#sk-container-id-15 div.sk-toggleable__content pre {margin: 0.2em;border-radius: 0.25em;color: var(--sklearn-color-text);/* unfitted */background-color: var(--sklearn-color-unfitted-level-0);
}#sk-container-id-15 div.sk-toggleable__content.fitted pre {/* unfitted */background-color: var(--sklearn-color-fitted-level-0);
}#sk-container-id-15 input.sk-toggleable__control:checked~div.sk-toggleable__content {/* Expand drop-down */max-height: 200px;max-width: 100%;overflow: auto;
}#sk-container-id-15 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";
}/* Pipeline/ColumnTransformer-specific style */#sk-container-id-15 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {color: var(--sklearn-color-text);background-color: var(--sklearn-color-unfitted-level-2);
}#sk-container-id-15 div.sk-label.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: var(--sklearn-color-fitted-level-2);
}/* Estimator-specific style *//* Colorize estimator box */
#sk-container-id-15 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {/* unfitted */background-color: var(--sklearn-color-unfitted-level-2);
}#sk-container-id-15 div.sk-estimator.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {/* fitted */background-color: var(--sklearn-color-fitted-level-2);
}#sk-container-id-15 div.sk-label label.sk-toggleable__label,
#sk-container-id-15 div.sk-label label {/* The background is the default theme color */color: var(--sklearn-color-text-on-default-background);
}/* On hover, darken the color of the background */
#sk-container-id-15 div.sk-label:hover label.sk-toggleable__label {color: var(--sklearn-color-text);background-color: var(--sklearn-color-unfitted-level-2);
}/* Label box, darken color on hover, fitted */
#sk-container-id-15 div.sk-label.fitted:hover label.sk-toggleable__label.fitted {color: var(--sklearn-color-text);background-color: var(--sklearn-color-fitted-level-2);
}/* Estimator label */#sk-container-id-15 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;
}#sk-container-id-15 div.sk-label-container {text-align: center;
}/* Estimator-specific */
#sk-container-id-15 div.sk-estimator {font-family: monospace;border: 1px dotted var(--sklearn-color-border-box);border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;/* unfitted */background-color: var(--sklearn-color-unfitted-level-0);
}#sk-container-id-15 div.sk-estimator.fitted {/* fitted */background-color: var(--sklearn-color-fitted-level-0);
}/* on hover */
#sk-container-id-15 div.sk-estimator:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-2);
}#sk-container-id-15 div.sk-estimator.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-2);
}/* Specification for estimator info (e.g. "i" and "?") *//* Common style for "i" and "?" */.sk-estimator-doc-link,
a:link.sk-estimator-doc-link,
a:visited.sk-estimator-doc-link {float: right;font-size: smaller;line-height: 1em;font-family: monospace;background-color: var(--sklearn-color-background);border-radius: 1em;height: 1em;width: 1em;text-decoration: none !important;margin-left: 1ex;/* unfitted */border: var(--sklearn-color-unfitted-level-1) 1pt solid;color: var(--sklearn-color-unfitted-level-1);
}.sk-estimator-doc-link.fitted,
a:link.sk-estimator-doc-link.fitted,
a:visited.sk-estimator-doc-link.fitted {/* fitted */border: var(--sklearn-color-fitted-level-1) 1pt solid;color: var(--sklearn-color-fitted-level-1);
}/* On hover */
div.sk-estimator:hover .sk-estimator-doc-link:hover,
.sk-estimator-doc-link:hover,
div.sk-label-container:hover .sk-estimator-doc-link:hover,
.sk-estimator-doc-link:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-3);color: var(--sklearn-color-background);text-decoration: none;
}div.sk-estimator.fitted:hover .sk-estimator-doc-link.fitted:hover,
.sk-estimator-doc-link.fitted:hover,
div.sk-label-container:hover .sk-estimator-doc-link.fitted:hover,
.sk-estimator-doc-link.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-3);color: var(--sklearn-color-background);text-decoration: none;
}/* Span, style for the box shown on hovering the info icon */
.sk-estimator-doc-link span {display: none;z-index: 9999;position: relative;font-weight: normal;right: .2ex;padding: .5ex;margin: .5ex;width: min-content;min-width: 20ex;max-width: 50ex;color: var(--sklearn-color-text);box-shadow: 2pt 2pt 4pt #999;/* unfitted */background: var(--sklearn-color-unfitted-level-0);border: .5pt solid var(--sklearn-color-unfitted-level-3);
}.sk-estimator-doc-link.fitted span {/* fitted */background: var(--sklearn-color-fitted-level-0);border: var(--sklearn-color-fitted-level-3);
}.sk-estimator-doc-link:hover span {display: block;
}/* "?"-specific style due to the `<a>` HTML tag */#sk-container-id-15 a.estimator_doc_link {float: right;font-size: 1rem;line-height: 1em;font-family: monospace;background-color: var(--sklearn-color-background);border-radius: 1rem;height: 1rem;width: 1rem;text-decoration: none;/* unfitted */color: var(--sklearn-color-unfitted-level-1);border: var(--sklearn-color-unfitted-level-1) 1pt solid;
}#sk-container-id-15 a.estimator_doc_link.fitted {/* fitted */border: var(--sklearn-color-fitted-level-1) 1pt solid;color: var(--sklearn-color-fitted-level-1);
}/* On hover */
#sk-container-id-15 a.estimator_doc_link:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-3);color: var(--sklearn-color-background);text-decoration: none;
}#sk-container-id-15 a.estimator_doc_link.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-3);
}
</style><div id="sk-container-id-15" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>LGBMClassifier(n_estimators=200)</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-15" type="checkbox" checked><label for="sk-estimator-id-15" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted"> LGBMClassifier<span class="sk-estimator-doc-link fitted">i<span>Fitted</span></span></label><div class="sk-toggleable__content fitted"><pre>LGBMClassifier(n_estimators=200)</pre></div> </div></div></div></div>
## Evaluation Results
Metrics calculated on a validation set of 1% of the test tiles
| Metric | Value |
|-----------|----------|
| accuracy | 0.87635 |
| precision | 0.785237 |
| recall | 0.756414 |
| f1 | 0.770556 |
## Dataset description
https://www.geolion.zh.ch/geodatensatz/2831
## Preprocessing description
Images are resampled to 50 cm resolution. Train/test split based on image descriptors with 1% of tiles selected for training.
# How to Get Started with the Model
[More Information Needed]
# Model Card Authors
Martí Bosch
# Model Card Contact
[email protected]
# Citation
https://joss.theoj.org/papers/10.21105/joss.02172
# Example predictions
<details>
<summary> Click to expand </summary>

</details>
|