tinyllama-1.1b-sum-dpo-full_LR2e-7_3epochs

This model is a fine-tuned version of martimfasantos/tinyllama-1.1b-sum-sft-full on the openai/summarize_from_feedback dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6411
  • Rewards/chosen: -1.5955
  • Rewards/rejected: -1.9066
  • Rewards/accuracies: 0.6273
  • Rewards/margins: 0.3112
  • Logps/rejected: -253.4108
  • Logps/chosen: -218.5612
  • Logits/rejected: -2.1502
  • Logits/chosen: -2.1697

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-07
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.6924 0.0689 400 0.6930 0.0011 0.0007 0.5390 0.0003 -62.6755 -58.9094 -2.9687 -2.9723
0.6891 0.1378 800 0.6909 -0.0061 -0.0108 0.5748 0.0047 -63.8305 -59.6239 -2.9588 -2.9622
0.6874 0.2068 1200 0.6876 -0.0302 -0.0427 0.5871 0.0124 -67.0173 -62.0385 -2.9361 -2.9395
0.676 0.2757 1600 0.6820 -0.1057 -0.1316 0.5850 0.0259 -75.9065 -69.5813 -2.8942 -2.8976
0.6751 0.3446 2000 0.6770 -0.1715 -0.2098 0.5890 0.0384 -83.7308 -76.1611 -2.8434 -2.8468
0.6518 0.4135 2400 0.6676 -0.3727 -0.4381 0.6069 0.0654 -106.5637 -96.2904 -2.7893 -2.7926
0.6695 0.4824 2800 0.6631 -0.4734 -0.5560 0.6141 0.0826 -118.3500 -106.3523 -2.7415 -2.7450
0.6467 0.5513 3200 0.6583 -0.6700 -0.7814 0.625 0.1113 -140.8851 -126.0199 -2.6864 -2.6902
0.6264 0.6203 3600 0.6586 -0.6359 -0.7384 0.6106 0.1024 -136.5857 -122.6100 -2.6176 -2.6225
0.6203 0.6892 4000 0.6523 -0.7851 -0.9183 0.6166 0.1332 -154.5775 -137.5248 -2.5583 -2.5642
0.6341 0.7581 4400 0.6487 -0.8786 -1.0259 0.6129 0.1473 -165.3377 -146.8752 -2.4643 -2.4723
0.6184 0.8270 4800 0.6454 -1.0766 -1.2481 0.6129 0.1716 -187.5630 -166.6730 -2.4141 -2.4242
0.609 0.8959 5200 0.6414 -0.9919 -1.1678 0.6164 0.1759 -179.5278 -158.2066 -2.3970 -2.4080
0.5977 0.9649 5600 0.6432 -0.9166 -1.0804 0.6273 0.1638 -170.7888 -150.6710 -2.3933 -2.4042
0.5845 1.0338 6000 0.6438 -1.3686 -1.6032 0.6245 0.2346 -223.0724 -195.8758 -2.2640 -2.2816
0.5789 1.1027 6400 0.6455 -1.3882 -1.6212 0.6164 0.2331 -224.8725 -197.8306 -2.2428 -2.2595
0.5681 1.1716 6800 0.6434 -1.3348 -1.5500 0.6129 0.2153 -217.7540 -192.4917 -2.2435 -2.2593
0.5602 1.2405 7200 0.6448 -1.3673 -1.5959 0.6234 0.2286 -222.3391 -195.7428 -2.2210 -2.2378
0.6357 1.3094 7600 0.6413 -1.3975 -1.6344 0.6125 0.2368 -226.1876 -198.7702 -2.2034 -2.2208
0.5491 1.3784 8000 0.6438 -1.4655 -1.7121 0.6055 0.2466 -233.9599 -205.5657 -2.1906 -2.2085
0.5537 1.4473 8400 0.6445 -1.4375 -1.6793 0.6259 0.2418 -230.6812 -202.7634 -2.1797 -2.1984
0.61 1.5162 8800 0.6405 -1.0941 -1.2946 0.6164 0.2005 -192.2120 -168.4266 -2.2428 -2.2579
0.523 1.5851 9200 0.6431 -1.4596 -1.7029 0.6289 0.2433 -233.0398 -204.9723 -2.1570 -2.1756
0.5412 1.6540 9600 0.6393 -1.4228 -1.6896 0.6315 0.2668 -231.7097 -201.2986 -2.1513 -2.1708
0.5368 1.7229 10000 0.6408 -1.3358 -1.5858 0.6236 0.2500 -221.3330 -192.5947 -2.1730 -2.1915
0.5064 1.7919 10400 0.6423 -1.0625 -1.2620 0.6215 0.1995 -188.9488 -165.2631 -2.2150 -2.2307
0.5268 1.8608 10800 0.6406 -1.4254 -1.6829 0.6341 0.2575 -231.0404 -201.5558 -2.1644 -2.1831
0.5384 1.9297 11200 0.6418 -1.6486 -1.9439 0.6364 0.2954 -257.1440 -223.8720 -2.1299 -2.1503
0.5734 1.9986 11600 0.6378 -1.4356 -1.7101 0.6362 0.2744 -233.7563 -202.5782 -2.1624 -2.1813
0.5302 2.0675 12000 0.6413 -1.7064 -2.0285 0.6292 0.3221 -265.5970 -229.6515 -2.1257 -2.1466
0.4961 2.1365 12400 0.6474 -2.0075 -2.3712 0.6387 0.3637 -299.8690 -259.7696 -2.0958 -2.1178
0.55 2.2054 12800 0.6415 -1.5035 -1.7868 0.6315 0.2833 -241.4328 -209.3660 -2.1574 -2.1761
0.5546 2.2743 13200 0.6425 -1.6715 -1.9874 0.6303 0.3159 -261.4859 -226.1615 -2.1413 -2.1612
0.5639 2.3432 13600 0.6409 -1.5908 -1.8980 0.6289 0.3072 -252.5519 -218.1001 -2.1481 -2.1675
0.5055 2.4121 14000 0.6384 -1.4618 -1.7629 0.6257 0.3010 -239.0347 -205.1979 -2.1665 -2.1857
0.5404 2.4810 14400 0.6405 -1.6514 -1.9790 0.6285 0.3276 -260.6489 -224.1589 -2.1411 -2.1613
0.5348 2.5500 14800 0.6418 -1.6812 -2.0090 0.6276 0.3278 -263.6481 -227.1385 -2.1375 -2.1578
0.5114 2.6189 15200 0.6408 -1.5587 -1.8632 0.6310 0.3046 -249.0734 -214.8810 -2.1538 -2.1732
0.5356 2.6878 15600 0.6405 -1.5493 -1.8534 0.6266 0.3041 -248.0918 -213.9473 -2.1550 -2.1743
0.4885 2.7567 16000 0.6406 -1.5822 -1.8916 0.6269 0.3094 -251.9056 -217.2328 -2.1512 -2.1707
0.5057 2.8256 16400 0.6410 -1.5799 -1.8883 0.6306 0.3084 -251.5751 -217.0051 -2.1527 -2.1720
0.5731 2.8946 16800 0.6412 -1.5917 -1.9021 0.6271 0.3104 -252.9564 -218.1854 -2.1507 -2.1702
0.4958 2.9635 17200 0.6412 -1.5933 -1.9040 0.6296 0.3107 -253.1478 -218.3473 -2.1506 -2.1702

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.1.2
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
21
Safetensors
Model size
1.1B params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for martimfasantos/tinyllama-1.1b-sum-dpo-full_LR2e-7_3epochs

Dataset used to train martimfasantos/tinyllama-1.1b-sum-dpo-full_LR2e-7_3epochs