CapyBaraHermes 2.5 Mistral 7B - GPTQ
- Model creator: karakuri-ai
- Original model: KARAKURI LM 70B Chat v0.1
Description
This repo contains AWQ model files for KARAKURI LM 70B Chat v0.1.
How to get the AWQ model
I created AWQ model files by using used autoawq==0.2.3.
pip install autoawq==0.2.3
This is the Python code to create AWQ model.
from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer
model_path = "karakuri-ai/karakuri-lm-70b-chat-v0.1"
quant_config = { "zero_point": True, "q_group_size": 128, "w_bit": 4, "version": "GEMM" }
# Load model
model = AutoAWQForCausalLM.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
# Quantize
model.quantize(tokenizer, quant_config=quant_config, calib_data="mmnga/wikipedia-ja-20230720-1k")
quant_path = "karakuri-lm-70b-v0.1-AWQ"
model.save_quantized(quant_path)
tokenizer.save_pretrained(quant_path)
Usage
from vllm import LLM, SamplingParams
sampling_params = SamplingParams(temperature=0.0, max_tokens=100)
llm = LLM(model="masao1211/karakuri-lm-70b-chat-v0.1-AWQ", max_model_len=4096)
system_prompt = "System prompt"
messages = [{"role": "system", "content": "System prompt"}]
messages.append({"role": "user", "content": "User Prompt"})
prompt = llm.llm_engine.tokenizer.tokenizer.apply_chat_template(conversation=messages, add_generation_prompt=True, tokenize=False)
prompts = [prompt]
outputs = llm.generate(prompts, sampling_params)
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
- Downloads last month
- 4
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for masao1211/karakuri-lm-70b-chat-v0.1-AWQ
Base model
meta-llama/Llama-2-70b-hf
Finetuned
karakuri-ai/karakuri-lm-70b-v0.1
Finetuned
karakuri-ai/karakuri-lm-70b-chat-v0.1