mateoluksenberg's picture
Model save
9b83453 verified
metadata
base_model: microsoft/dit-base
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: dit-base-Classifier_CM05_V2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0

dit-base-Classifier_CM05_V2

This model is a fine-tuned version of microsoft/dit-base on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8224
  • Accuracy: 0.0
  • Weighted f1: 0.0
  • Micro f1: 0.0
  • Macro f1: 0.0
  • Weighted recall: 0.0
  • Micro recall: 0.0
  • Macro recall: 0.0
  • Weighted precision: 0.0
  • Micro precision: 0.0
  • Macro precision: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 18

Training results

Training Loss Epoch Step Validation Loss Accuracy Weighted f1 Micro f1 Macro f1 Weighted recall Micro recall Macro recall Weighted precision Micro precision Macro precision
0.236 1.0 1 0.3301 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.236 2.0 2 0.5344 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.236 3.0 3 1.4354 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.236 4.0 4 2.9869 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.236 5.0 5 3.6242 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.236 6.0 6 3.4178 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.236 7.0 7 2.9061 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.1227 8.0 8 2.3784 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.1227 9.0 9 1.9251 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.1227 10.0 10 1.5871 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.1227 11.0 11 1.3348 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.1227 12.0 12 1.1845 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.1227 13.0 13 1.0686 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.1227 14.0 14 0.9755 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.1227 15.0 15 0.9099 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0376 16.0 16 0.8643 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0376 17.0 17 0.8357 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0376 18.0 18 0.8224 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1