|
--- |
|
arxiv: '2006.15418' |
|
tags: |
|
- video |
|
- repetition |
|
datasets: |
|
- countix |
|
--- |
|
|
|
# RepNet PyTorch |
|
|
|
GitHub repository: https://github.com/materight/RepNet-pytorch. |
|
|
|
A PyTorch port with pre-trained weights of **RepNet**, from *Counting Out Time: Class Agnostic Video Repetition Counting in the Wild* (CVPR 2020) [[paper]](https://arxiv.org/abs/2006.15418) [[project]](https://sites.google.com/view/repnet) [[notebook]](https://colab.research.google.com/github/google-research/google-research/blob/master/repnet/repnet_colab.ipynb#scrollTo=FUg2vSYhmsT0). |
|
|
|
This repo provides an implementation of RepNet written in PyTorch and a script to convert the pre-trained TensorFlow weights provided by the authors. The outputs of the two implementations are almost identical, with a small deviation (less than $10^{-6}$ at most) probably caused by the [limited precision of floating point operations](https://pytorch.org/docs/stable/notes/numerical_accuracy.html). |
|
|
|
<div align="center"> |
|
<img src="https://raw.githubusercontent.com/materight/RepNet-pytorch/main/img/example1.gif" height="160" /> |
|
<img src="https://raw.githubusercontent.com/materight/RepNet-pytorch/main/img/example2.gif" height="160" /> |
|
<img src="https://raw.githubusercontent.com/materight/RepNet-pytorch/main/img/example3.gif" height="160" /> |
|
<img src="https://raw.githubusercontent.com/materight/RepNet-pytorch/main/img/example4.gif" height="160" /> |
|
</div> |
|
|
|
## Get Started |
|
- Clone this repo and install dependencies: |
|
```bash |
|
git clone https://github.com/materight/RepNet-pytorch |
|
cd RepNet-pytorch |
|
pip install -r requirements.txt |
|
``` |
|
|
|
- To download the TensorFlow pre-trained weights and convert them to PyTorch, run: |
|
```bash |
|
python convert_weights.py |
|
``` |
|
|
|
## Run inference |
|
Simply run: |
|
```bash |
|
python run.py |
|
``` |
|
The script will download a sample video, run inference on it and save the count visualization. You can also specify a video path as argument (either a local path or a YouTube/HTTP URL): |
|
```bash |
|
python run.py --video_path [video_path] |
|
``` |
|
If the model does not produce good results, try to run the script with more stride values using `--strides`. |
|
|
|
Example of generated videos showing the repetition count, with the periodicity score and the temporal self-similarity matrix: |
|
<div align="center"> |
|
<img src="https://raw.githubusercontent.com/materight/RepNet-pytorch/main/img/example5_score.gif" height="200" /> |
|
<img src="https://raw.githubusercontent.com/materight/RepNet-pytorch/main/img/example5_tsm.png" height="200" /> |
|
</div> |
|
|