Training procedure

The following bitsandbytes quantization config was used during training:

  • quant_method: gptq
  • bits: 8
  • tokenizer: None
  • dataset: None
  • group_size: 32
  • damp_percent: 0.1
  • desc_act: True
  • sym: True
  • true_sequential: True
  • use_cuda_fp16: False
  • model_seqlen: 4096
  • block_name_to_quantize: model.layers
  • module_name_preceding_first_block: ['model.embed_tokens']
  • batch_size: 1
  • pad_token_id: None
  • disable_exllama: True
  • max_input_length: None

Framework versions

Load model AutoModel

from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM

config = PeftConfig.from_pretrained("matheusrdgsf/cesar-ptbr")
model = AutoModelForCausalLM.from_pretrained("TheBloke/zephyr-7B-beta-GPTQ", revision="gptq-8bit-32g-actorder_True", device_map='auto')
model = PeftModel.from_pretrained(model, "matheusrdgsf/cesar-ptbr")

Easy inference

from transformers import GenerationConfig
from transformers import AutoTokenizer

tokenizer_model = AutoTokenizer.from_pretrained('TheBloke/zephyr-7B-beta-GPTQ')
tokenizer_template = AutoTokenizer.from_pretrained('HuggingFaceH4/zephyr-7b-alpha')

generation_config = GenerationConfig(
    do_sample=True,
    temperature=0.1,
    top_p=0.25,
    top_k=0,
    max_new_tokens=512,
    repetition_penalty=1.1,
    eos_token_id=tokenizer_model.eos_token_id,
    pad_token_id=tokenizer_model.eos_token_id,
)


def get_inference(
    text,
    model,
    tokenizer_model=tokenizer_model,
    tokenizer_template=tokenizer_template,
    generation_config=generation_config,
):
    st_time = time.time()
    inputs = tokenizer_model(
        tokenizer_template.apply_chat_template(
            [
                {
                    "role": "system",
                    "content": "Você é um chatbot para indicação de filmes. Responda em português e de maneira educada sugestões de filmes para os usuários.",
                },
                {"role": "user", "content": text},
            ],
            tokenize=False,
        ),
        return_tensors="pt",
    ).to("cuda")

    outputs = model.generate(**inputs, generation_config=generation_config)

    print('inference time:', time.time() - st_time)
    return tokenizer_model.decode(outputs[0], skip_special_tokens=True).split('\n')[-1]

get_inference('Poderia indicar filmes de ação de até 2 horas?', model)
  • PEFT 0.5.0

Open Portuguese LLM Leaderboard Evaluation Results

Detailed results can be found here and on the 🚀 Open Portuguese LLM Leaderboard

Metric Value
Average 59.22
ENEM Challenge (No Images) 53.74
BLUEX (No Images) 46.87
OAB Exams 38.27
Assin2 RTE 58.32
Assin2 STS 68.49
FaQuAD NLI 73.81
HateBR Binary 83.30
PT Hate Speech Binary 67.49
tweetSentBR 42.71
Downloads last month
4
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for matheusrdgsf/cesar-ptbr

Adapter
(39)
this model

Space using matheusrdgsf/cesar-ptbr 1

Evaluation results