Training procedure
The following bitsandbytes
quantization config was used during training:
- quant_method: gptq
- bits: 8
- tokenizer: None
- dataset: None
- group_size: 32
- damp_percent: 0.1
- desc_act: True
- sym: True
- true_sequential: True
- use_cuda_fp16: False
- model_seqlen: 4096
- block_name_to_quantize: model.layers
- module_name_preceding_first_block: ['model.embed_tokens']
- batch_size: 1
- pad_token_id: None
- disable_exllama: True
- max_input_length: None
Framework versions
Load model AutoModel
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM
config = PeftConfig.from_pretrained("matheusrdgsf/cesar-ptbr")
model = AutoModelForCausalLM.from_pretrained("TheBloke/zephyr-7B-beta-GPTQ", revision="gptq-8bit-32g-actorder_True", device_map='auto')
model = PeftModel.from_pretrained(model, "matheusrdgsf/cesar-ptbr")
Easy inference
from transformers import GenerationConfig
from transformers import AutoTokenizer
tokenizer_model = AutoTokenizer.from_pretrained('TheBloke/zephyr-7B-beta-GPTQ')
tokenizer_template = AutoTokenizer.from_pretrained('HuggingFaceH4/zephyr-7b-alpha')
generation_config = GenerationConfig(
do_sample=True,
temperature=0.1,
top_p=0.25,
top_k=0,
max_new_tokens=512,
repetition_penalty=1.1,
eos_token_id=tokenizer_model.eos_token_id,
pad_token_id=tokenizer_model.eos_token_id,
)
def get_inference(
text,
model,
tokenizer_model=tokenizer_model,
tokenizer_template=tokenizer_template,
generation_config=generation_config,
):
st_time = time.time()
inputs = tokenizer_model(
tokenizer_template.apply_chat_template(
[
{
"role": "system",
"content": "Você é um chatbot para indicação de filmes. Responda em português e de maneira educada sugestões de filmes para os usuários.",
},
{"role": "user", "content": text},
],
tokenize=False,
),
return_tensors="pt",
).to("cuda")
outputs = model.generate(**inputs, generation_config=generation_config)
print('inference time:', time.time() - st_time)
return tokenizer_model.decode(outputs[0], skip_special_tokens=True).split('\n')[-1]
get_inference('Poderia indicar filmes de ação de até 2 horas?', model)
- PEFT 0.5.0
Open Portuguese LLM Leaderboard Evaluation Results
Detailed results can be found here and on the 🚀 Open Portuguese LLM Leaderboard
Metric | Value |
---|---|
Average | 59.22 |
ENEM Challenge (No Images) | 53.74 |
BLUEX (No Images) | 46.87 |
OAB Exams | 38.27 |
Assin2 RTE | 58.32 |
Assin2 STS | 68.49 |
FaQuAD NLI | 73.81 |
HateBR Binary | 83.30 |
PT Hate Speech Binary | 67.49 |
tweetSentBR | 42.71 |
- Downloads last month
- 4
Model tree for matheusrdgsf/cesar-ptbr
Base model
mistralai/Mistral-7B-v0.1
Finetuned
HuggingFaceH4/zephyr-7b-beta
Quantized
TheBloke/zephyr-7B-beta-GPTQ
Space using matheusrdgsf/cesar-ptbr 1
Evaluation results
- accuracy on ENEM Challenge (No Images)Open Portuguese LLM Leaderboard53.740
- accuracy on BLUEX (No Images)Open Portuguese LLM Leaderboard46.870
- accuracy on OAB ExamsOpen Portuguese LLM Leaderboard38.270
- f1-macro on Assin2 RTEtest set Open Portuguese LLM Leaderboard58.320
- pearson on Assin2 STStest set Open Portuguese LLM Leaderboard68.490
- f1-macro on FaQuAD NLItest set Open Portuguese LLM Leaderboard73.810
- f1-macro on HateBR Binarytest set Open Portuguese LLM Leaderboard83.300
- f1-macro on PT Hate Speech Binarytest set Open Portuguese LLM Leaderboard67.490
- f1-macro on tweetSentBRtest set Open Portuguese LLM Leaderboard42.710