Model Card for Phi 1.5B Microsoft Trained Sentiment Analysis Model

This model performs sentiment analysis on sentences, classifying them as either 'positive' or 'negative'. It is trained on the IMDB dataset and has been fine-tuned for this task.

Model Details

Model Description

Phi 1.5B Microsoft trained with the IMDB Dataset.

Prompt Used in Training

Your task is to classify sentences' sentiment as 'positive' or 'negative'. Your answer should be one word, either 'positive' or 'negative'. Sentence: {text} Answer:

Inference Example using Hugging Face Inference API

from transformers import pipeline

classifier = pipeline("text-classification", model="matheusrdgsf/phi-sentiment-analysis-model")

result = classifier("I love this movie")
print(result[0]['label'])  # Output: 'POSITIVE'
Downloads last month
132
Safetensors
Model size
1.42B params
Tensor type
FP16
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.