matheusrdgsf commited on
Commit
a18301f
·
verified ·
1 Parent(s): 29ed56f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +20 -5
README.md CHANGED
@@ -2,25 +2,40 @@
2
  library_name: transformers
3
  language:
4
  - en
 
 
 
 
5
  pipeline_tag: text-generation
6
  tags:
7
  - nlp
8
  ---
9
 
10
- # Model Card for Model ID
11
 
12
  <!-- Provide a quick summary of what the model is/does. -->
13
 
14
-
15
 
16
  ## Model Details
17
 
18
  ### Model Description
19
 
20
- Phi 1.5B Microsoft trained with IMDB Dataset.
21
 
22
  ### Prompt Used in Training
23
 
24
- """Your task is to classify sentences' sentiment as 'positive' or 'negative'. Your answer should be one word, either 'positive' or 'negative'.
25
  Sentence: {text}
26
- Answer: """
 
 
 
 
 
 
 
 
 
 
 
 
2
  library_name: transformers
3
  language:
4
  - en
5
+ widget:
6
+ - text: "Your task is to classify sentences' sentiment as 'positive' or 'negative'. Your answer should be one word, either 'positive' or 'negative'.
7
+ Sentence: {text}
8
+ Answer: "
9
  pipeline_tag: text-generation
10
  tags:
11
  - nlp
12
  ---
13
 
14
+ # Model Card for Phi 1.5B Microsoft Trained Sentiment Analysis Model
15
 
16
  <!-- Provide a quick summary of what the model is/does. -->
17
 
18
+ This model performs sentiment analysis on sentences, classifying them as either 'positive' or 'negative'. It is trained on the IMDB dataset and has been fine-tuned for this task.
19
 
20
  ## Model Details
21
 
22
  ### Model Description
23
 
24
+ Phi 1.5B Microsoft trained with the IMDB Dataset.
25
 
26
  ### Prompt Used in Training
27
 
28
+ Your task is to classify sentences' sentiment as 'positive' or 'negative'. Your answer should be one word, either 'positive' or 'negative'.
29
  Sentence: {text}
30
+ Answer:
31
+
32
+
33
+ ## Inference Example using Hugging Face Inference API
34
+
35
+ ```python
36
+ from transformers import pipeline
37
+
38
+ classifier = pipeline("text-classification", model="matheusrdgsf/phi-sentiment-analysis-model")
39
+
40
+ result = classifier("I love this movie")
41
+ print(result[0]['label']) # Output: 'POSITIVE'