matrix-llm-v1.0 / README.md
prasenjeethowlader099's picture
Update README.md
d39dde4 verified
---
license: mit
library_name: PyTorch
new_version: matrixllm/matrix-llm-v1.1
pipeline_tag: text-generation
---
<style>
@import url('https://fonts.googleapis.com/css2?family=Arvo:ital,wght@0,400;0,700;1,400;1,700&family=Jacquard+24&display=swap');
body{
font-family:monospace !important
}
</style>
<h1>Matrix LLM v1.0</h1>
<p align="center">
<img src="https://huggingface.co/matrixllm/matrix-llm-v1.0/resolve/main/logo.png" alt="Matrix LLM Logo" width="200">
</p>
<hr style="border-style:dashed"/>
<p align="center" style="font-size:10pt;color:gray">
<strong class="se" style="color:black; text-decoration:underline">Matrix LLM v1.0</strong> is a state-of-the-art language model specifically designed for text generation and natural language understanding tasks. Trained on a diverse dataset, it ensures high performance across various applications such as chatbots, content creation, and more.
</p>
<h1>Model Details</h1>
- **Model Type**: <span style="font-family:monospace;">Language Model</span>
- **Architecture**: <span style="font-family:monospace;">Transformer-based</span>
- **Training Data**: <span style="font-family:monospace;">A large and diverse text corpus</span>
- **License**: <span style="font-family:monospace;">MIT</span>
<hr/>
<h1>Intended Use</h1>
This model is intended for:
- Generating human-like text for chatbots
- Assisting in content creation
- Enhancing natural language understanding in applications
<hr/>
<h1>How to Use</h1>
To use this model, you can load it via the Hugging Face `transformers` library as follows:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("matrixllm/matrix-llm-v1.0")
model = AutoModelForCausalLM.from_pretrained("matrixllm/matrix-llm-v1.0")
input_text = "Once upon a time,"
inputs = tokenizer(input_text, return_tensors="pt")
outputs = model.generate(**inputs, max_length=50)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
<hr/>
<h1>Training</h1>
Matrix LLM v1.0 was trained using a transformer architecture with optimized hyperparameters to ensure high performance and efficiency.
<hr/>
<h1>Evaluation</h1>
The model was evaluated on a range of standard benchmarks and datasets to ensure its robustness and generalization capabilities.
<hr/>
<h1>Limitations</h1>
While Matrix LLM v1.0 is highly capable, it is important to be aware of its limitations:
- It may generate biased or inappropriate content as it learns from the dataset it was trained on.
- It is not a substitute for human judgment and should be used with caution in critical applications.
<hr/>
<h1>Ethical Considerations</h1>
Users should be aware of the ethical implications of using AI-generated content and ensure that it is used responsibly. The model's training data may contain biases that could be reflected in its output.
<hr/>
<h1>Contact</h1>
For more information or to report issues, please contact [Your Name or Team] at [Your Email or Contact Information].