matthieulel's picture
Model save
d8fa9b7 verified
|
raw
history blame
4.39 kB
metadata
license: apache-2.0
base_model: facebook/convnextv2-large-1k-224
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: convnextv2-large-1k-224-finetuned-galaxy10-decals
    results: []

convnextv2-large-1k-224-finetuned-galaxy10-decals

This model is a fine-tuned version of facebook/convnextv2-large-1k-224 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4970
  • Accuracy: 0.8630
  • Precision: 0.8615
  • Recall: 0.8630
  • F1: 0.8617

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.9261 0.99 62 1.8153 0.4696 0.5070 0.4696 0.3875
1.2684 2.0 125 1.1432 0.6793 0.6395 0.6793 0.6478
0.9177 2.99 187 0.7477 0.7847 0.7832 0.7847 0.7720
0.6937 4.0 250 0.5962 0.8168 0.8145 0.8168 0.8104
0.5937 4.99 312 0.5862 0.8191 0.8234 0.8191 0.8167
0.5921 6.0 375 0.5389 0.8365 0.8454 0.8365 0.8300
0.557 6.99 437 0.4944 0.8433 0.8478 0.8433 0.8410
0.5522 8.0 500 0.5022 0.8427 0.8508 0.8427 0.8416
0.5028 8.99 562 0.4481 0.8579 0.8610 0.8579 0.8580
0.4801 10.0 625 0.4360 0.8551 0.8536 0.8551 0.8527
0.4475 10.99 687 0.4663 0.8410 0.8423 0.8410 0.8407
0.411 12.0 750 0.4444 0.8546 0.8552 0.8546 0.8538
0.4173 12.99 812 0.4341 0.8613 0.8627 0.8613 0.8595
0.3995 14.0 875 0.4380 0.8653 0.8655 0.8653 0.8637
0.3657 14.99 937 0.4659 0.8625 0.8633 0.8625 0.8615
0.3533 16.0 1000 0.4600 0.8602 0.8592 0.8602 0.8585
0.3001 16.99 1062 0.5069 0.8478 0.8455 0.8478 0.8450
0.318 18.0 1125 0.4647 0.8574 0.8576 0.8574 0.8552
0.3029 18.99 1187 0.4479 0.8681 0.8670 0.8681 0.8668
0.2915 20.0 1250 0.4772 0.8625 0.8598 0.8625 0.8586
0.2742 20.99 1312 0.4798 0.8557 0.8538 0.8557 0.8521
0.3067 22.0 1375 0.4767 0.8602 0.8573 0.8602 0.8575
0.2758 22.99 1437 0.5099 0.8506 0.8547 0.8506 0.8516
0.2527 24.0 1500 0.5016 0.8585 0.8563 0.8585 0.8565
0.253 24.99 1562 0.4990 0.8625 0.8605 0.8625 0.8604
0.2361 26.0 1625 0.4903 0.8602 0.8590 0.8602 0.8591
0.2325 26.99 1687 0.5062 0.8602 0.8612 0.8602 0.8600
0.2448 28.0 1750 0.4997 0.8670 0.8648 0.8670 0.8646
0.2354 28.99 1812 0.4956 0.8608 0.8586 0.8608 0.8590
0.2156 29.76 1860 0.4970 0.8630 0.8615 0.8630 0.8617

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.15.1