matthieulel's picture
End of training
ec28fa4 verified
metadata
license: apache-2.0
base_model: facebook/convnextv2-nano-22k-384
tags:
  - image-classification
  - vision
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: convnextv2-nano-22k-384-finetuned-galaxy10-decals
    results: []

convnextv2-nano-22k-384-finetuned-galaxy10-decals

This model is a fine-tuned version of facebook/convnextv2-nano-22k-384 on the matthieulel/galaxy10_decals dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4057
  • Accuracy: 0.8681
  • Precision: 0.8662
  • Recall: 0.8681
  • F1: 0.8650

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.6939 0.99 62 1.5326 0.4656 0.4580 0.4656 0.4176
0.9882 2.0 125 0.8491 0.7142 0.7196 0.7142 0.7066
0.7595 2.99 187 0.6041 0.7993 0.7990 0.7993 0.7947
0.6097 4.0 250 0.5397 0.8134 0.8078 0.8134 0.8069
0.5565 4.99 312 0.4990 0.8286 0.8269 0.8286 0.8268
0.5822 6.0 375 0.4684 0.8427 0.8425 0.8427 0.8374
0.5244 6.99 437 0.4484 0.8512 0.8476 0.8512 0.8483
0.4957 8.0 500 0.4487 0.8506 0.8543 0.8506 0.8514
0.4857 8.99 562 0.4369 0.8579 0.8572 0.8579 0.8545
0.4634 10.0 625 0.4104 0.8658 0.8630 0.8658 0.8639
0.4433 10.99 687 0.4117 0.8664 0.8649 0.8664 0.8651
0.4267 12.0 750 0.4096 0.8664 0.8632 0.8664 0.8634
0.4201 12.99 812 0.4212 0.8658 0.8645 0.8658 0.8631
0.4176 14.0 875 0.4057 0.8681 0.8662 0.8681 0.8650
0.3717 14.99 937 0.4299 0.8568 0.8547 0.8568 0.8551
0.3759 16.0 1000 0.4446 0.8585 0.8563 0.8585 0.8555
0.3264 16.99 1062 0.4276 0.8647 0.8630 0.8647 0.8623
0.3573 18.0 1125 0.4199 0.8641 0.8621 0.8641 0.8610
0.3356 18.99 1187 0.4388 0.8585 0.8597 0.8585 0.8579
0.3313 20.0 1250 0.4385 0.8602 0.8585 0.8602 0.8571
0.3044 20.99 1312 0.4485 0.8585 0.8578 0.8585 0.8560
0.3525 22.0 1375 0.4303 0.8647 0.8641 0.8647 0.8634
0.3207 22.99 1437 0.4525 0.8608 0.8597 0.8608 0.8591
0.3044 24.0 1500 0.4417 0.8591 0.8578 0.8591 0.8579
0.3088 24.99 1562 0.4626 0.8608 0.8586 0.8608 0.8582
0.2897 26.0 1625 0.4524 0.8630 0.8606 0.8630 0.8606
0.2823 26.99 1687 0.4433 0.8670 0.8657 0.8670 0.8657
0.2928 28.0 1750 0.4479 0.8658 0.8629 0.8658 0.8631
0.2695 28.99 1812 0.4455 0.8658 0.8637 0.8658 0.8639
0.274 29.76 1860 0.4449 0.8630 0.8607 0.8630 0.8610

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.15.1