matthieulel's picture
End of training
92e294f verified
metadata
license: apache-2.0
base_model: facebook/convnextv2-pico-1k-224
tags:
  - image-classification
  - vision
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: convnextv2-pico-1k-224-finetuned-galaxy10-decals
    results: []

convnextv2-pico-1k-224-finetuned-galaxy10-decals

This model is a fine-tuned version of facebook/convnextv2-pico-1k-224 on the matthieulel/galaxy10_decals dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5795
  • Accuracy: 0.8546
  • Precision: 0.8565
  • Recall: 0.8546
  • F1: 0.8545

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.0752 0.99 62 0.9584 0.6697 0.6820 0.6697 0.6581
0.814 2.0 125 0.6716 0.7728 0.7780 0.7728 0.7695
0.7289 2.99 187 0.6071 0.7959 0.8093 0.7959 0.7943
0.6444 4.0 250 0.5873 0.8055 0.8103 0.8055 0.8019
0.5855 4.99 312 0.5889 0.8106 0.8226 0.8106 0.8106
0.5778 6.0 375 0.5039 0.8281 0.8321 0.8281 0.8274
0.5575 6.99 437 0.5162 0.8140 0.8235 0.8140 0.8148
0.5011 8.0 500 0.5369 0.8207 0.8234 0.8207 0.8205
0.4968 8.99 562 0.5152 0.8292 0.8282 0.8292 0.8270
0.4593 10.0 625 0.4854 0.8382 0.8408 0.8382 0.8367
0.4442 10.99 687 0.4923 0.8416 0.8423 0.8416 0.8411
0.4071 12.0 750 0.5312 0.8377 0.8356 0.8377 0.8331
0.4057 12.99 812 0.4954 0.8433 0.8449 0.8433 0.8416
0.4074 14.0 875 0.4735 0.8534 0.8509 0.8534 0.8493
0.3709 14.99 937 0.4977 0.8461 0.8450 0.8461 0.8442
0.3467 16.0 1000 0.5364 0.8286 0.8278 0.8286 0.8274
0.3129 16.99 1062 0.5695 0.8422 0.8413 0.8422 0.8376
0.3242 18.0 1125 0.5131 0.8455 0.8469 0.8455 0.8450
0.3046 18.99 1187 0.5553 0.8399 0.8382 0.8399 0.8371
0.2805 20.0 1250 0.5871 0.8523 0.8532 0.8523 0.8456
0.2776 20.99 1312 0.5428 0.8433 0.8404 0.8433 0.8404
0.2975 22.0 1375 0.5624 0.8393 0.8344 0.8393 0.8359
0.268 22.99 1437 0.5485 0.8495 0.8518 0.8495 0.8498
0.2535 24.0 1500 0.6135 0.8382 0.8367 0.8382 0.8358
0.2543 24.99 1562 0.6103 0.8393 0.8389 0.8393 0.8375
0.2283 26.0 1625 0.5639 0.8484 0.8499 0.8484 0.8480
0.2341 26.99 1687 0.5795 0.8546 0.8565 0.8546 0.8545
0.2404 28.0 1750 0.5794 0.8534 0.8515 0.8534 0.8511
0.2168 28.99 1812 0.5652 0.8546 0.8525 0.8546 0.8524
0.2057 29.76 1860 0.5650 0.8546 0.8519 0.8546 0.8518

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.15.1