Edit model card

pertama

This model is a fine-tuned version of indobenchmark/indobert-large-p2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.4507
  • F1 macro: 0.4131
  • Weighted: 0.5840
  • Balanced accuracy: 0.5423

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 14

Training results

Training Loss Epoch Step Validation Loss F1 macro Weighted Balanced accuracy
1.3416 1.0 154 1.5603 0.2942 0.3462 0.4357
0.941 2.0 308 1.3408 0.3530 0.5202 0.4807
0.6965 3.0 462 1.3731 0.3747 0.5629 0.5101
0.4375 4.0 616 1.3137 0.3904 0.5961 0.5002
0.2491 5.0 770 1.5577 0.3772 0.5930 0.4978
0.0793 6.0 924 2.1326 0.3923 0.5382 0.5401
0.0488 7.0 1078 2.2000 0.3861 0.5483 0.5243
0.0206 8.0 1232 2.1568 0.3914 0.5873 0.5096
0.0243 9.0 1386 2.2272 0.4118 0.5851 0.5457
0.0126 10.0 1540 2.3494 0.4029 0.5885 0.5346
0.0449 11.0 1694 2.2914 0.4115 0.6037 0.5387
0.0023 12.0 1848 2.5714 0.3962 0.5675 0.5334
0.0023 13.0 2002 2.4491 0.4155 0.5878 0.5400
0.0024 14.0 2156 2.4507 0.4131 0.5840 0.5423

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
8
Safetensors
Model size
335M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for maulairfani/pertama

Finetuned
(8)
this model