|
--- |
|
language: de |
|
datasets: |
|
- common_voice |
|
metrics: |
|
- wer |
|
tags: |
|
- audio |
|
- automatic-speech-recognition |
|
- speech |
|
- xlsr-fine-tuning-week |
|
license: apache-2.0 |
|
model-index: |
|
- name: {XLSR Wav2Vec2 Large 53 CV-de} |
|
results: |
|
- task: |
|
name: Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Common Voice de |
|
type: common_voice |
|
args: de |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 12.62 |
|
--- |
|
|
|
# Wav2Vec2-Large-XLSR-53-German |
|
|
|
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on German using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. |
|
When using this model, make sure that your speech input is sampled at 16kHz. |
|
|
|
## Usage |
|
|
|
The model can be used directly (without a language model) as follows: |
|
|
|
```python |
|
import torch |
|
import torchaudio |
|
from datasets import load_dataset |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
|
|
test_dataset = load_dataset("common_voice", "de", split="test[:8]") # use a batch of 8 for demo purposes |
|
|
|
processor = Wav2Vec2Processor.from_pretrained("maxidl/wav2vec2-large-xlsr-german") |
|
model = Wav2Vec2ForCTC.from_pretrained("maxidl/wav2vec2-large-xlsr-german") |
|
|
|
resampler = torchaudio.transforms.Resample(48_000, 16_000) |
|
|
|
""" |
|
Preprocessing the dataset by: |
|
- loading audio files |
|
- resampling to 16kHz |
|
- converting to array |
|
- prepare input tensor using the processor |
|
""" |
|
def speech_file_to_array_fn(batch): |
|
speech_array, sampling_rate = torchaudio.load(batch["path"]) |
|
batch["speech"] = resampler(speech_array).squeeze().numpy() |
|
return batch |
|
|
|
test_dataset = test_dataset.map(speech_file_to_array_fn) |
|
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) |
|
|
|
# run forward |
|
with torch.no_grad(): |
|
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits |
|
|
|
predicted_ids = torch.argmax(logits, dim=-1) |
|
|
|
print("Prediction:", processor.batch_decode(predicted_ids)) |
|
print("Reference:", test_dataset["sentence"]) |
|
""" |
|
Example Result: |
|
|
|
Prediction: [ |
|
'zieh durch bittet draußen die schuhe aus', |
|
'es kommt zugvorgebauten fo', |
|
'ihre vorterstrecken erschienen it modemagazinen wie der voge karpes basar mariclair', |
|
'fürliepert eine auch für manachen ungewöhnlich lange drittelliste', |
|
'er wurde zu ehren des reichskanzlers otto von bismarck errichtet', |
|
'was solls ich bin bereit', |
|
'das internet besteht aus vielen computern die miteinander verbunden sind', |
|
'der uranus ist der siebinteplanet in unserem sonnensystem s' |
|
] |
|
|
|
Reference: [ |
|
'Zieht euch bitte draußen die Schuhe aus.', |
|
'Es kommt zum Showdown in Gstaad.', |
|
'Ihre Fotostrecken erschienen in Modemagazinen wie der Vogue, Harper’s Bazaar und Marie Claire.', |
|
'Felipe hat eine auch für Monarchen ungewöhnlich lange Titelliste.', |
|
'Er wurde zu Ehren des Reichskanzlers Otto von Bismarck errichtet.', |
|
'Was solls, ich bin bereit.', |
|
'Das Internet besteht aus vielen Computern, die miteinander verbunden sind.', |
|
'Der Uranus ist der siebente Planet in unserem Sonnensystem.' |
|
] |
|
""" |
|
``` |
|
|
|
|
|
## Evaluation |
|
|
|
The model can be evaluated as follows on the German test data of Common Voice: |
|
|
|
|
|
```python |
|
import re |
|
import torch |
|
import torchaudio |
|
from datasets import load_dataset, load_metric |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
|
|
""" |
|
Evaluation on the full test set: |
|
- takes ~20mins (RTX 3090). |
|
- requires ~170GB RAM to compute the WER. Below, we use a chunked implementation of WER to avoid large RAM consumption. |
|
""" |
|
test_dataset = load_dataset("common_voice", "de", split="test") # use "test[:1%]" for 1% sample |
|
wer = load_metric("wer") |
|
|
|
processor = Wav2Vec2Processor.from_pretrained("maxidl/wav2vec2-large-xlsr-german") |
|
model = Wav2Vec2ForCTC.from_pretrained("maxidl/wav2vec2-large-xlsr-german") |
|
model.to("cuda") |
|
|
|
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]' |
|
resampler = torchaudio.transforms.Resample(48_000, 16_000) |
|
|
|
# Preprocessing the datasets. |
|
# We need to read the aduio files as arrays |
|
def speech_file_to_array_fn(batch): |
|
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() |
|
speech_array, sampling_rate = torchaudio.load(batch["path"]) |
|
batch["speech"] = resampler(speech_array).squeeze().numpy() |
|
return batch |
|
|
|
test_dataset = test_dataset.map(speech_file_to_array_fn) |
|
|
|
# Preprocessing the datasets. |
|
# We need to read the audio files as arrays |
|
def evaluate(batch): |
|
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) |
|
|
|
with torch.no_grad(): |
|
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits |
|
|
|
pred_ids = torch.argmax(logits, dim=-1) |
|
batch["pred_strings"] = processor.batch_decode(pred_ids) |
|
return batch |
|
|
|
result = test_dataset.map(evaluate, batched=True, batch_size=8) # batch_size=8 -> requires ~14.5GB GPU memory |
|
|
|
# non-chunked version: |
|
# print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) |
|
# WER: 12.615308 |
|
|
|
# Chunked version, see https://discuss.huggingface.co/t/spanish-asr-fine-tuning-wav2vec2/4586/5: |
|
import jiwer |
|
|
|
def chunked_wer(targets, predictions, chunk_size=None): |
|
if chunk_size is None: return jiwer.wer(targets, predictions) |
|
start = 0 |
|
end = chunk_size |
|
H, S, D, I = 0, 0, 0, 0 |
|
while start < len(targets): |
|
chunk_metrics = jiwer.compute_measures(targets[start:end], predictions[start:end]) |
|
H = H + chunk_metrics["hits"] |
|
S = S + chunk_metrics["substitutions"] |
|
D = D + chunk_metrics["deletions"] |
|
I = I + chunk_metrics["insertions"] |
|
start += chunk_size |
|
end += chunk_size |
|
return float(S + D + I) / float(H + S + D) |
|
|
|
print("Total (chunk_size=1000), WER: {:2f}".format(100 * chunked_wer(result["pred_strings"], result["sentence"], chunk_size=1000))) |
|
# Total (chunk=1000), WER: 12.768981 |
|
``` |
|
|
|
**Test Result**: 12.62 % |
|
|
|
|
|
## Training |
|
|
|
The Common Voice German `train` and `validation` were used for training. |
|
The script used for training can be found [here](https://github.com/maxidl/wav2vec2). |
|
The model was trained for 50k steps, taking around 30 hours on a single A100. |
|
|
|
The arguments used for training this model are: |
|
``` |
|
python run_finetuning.py \ |
|
--model_name_or_path="facebook/wav2vec2-large-xlsr-53" \ |
|
--dataset_config_name="de" \ |
|
--output_dir=./wav2vec2-large-xlsr-german \ |
|
--preprocessing_num_workers="16" \ |
|
--overwrite_output_dir \ |
|
--num_train_epochs="20" \ |
|
--per_device_train_batch_size="64" \ |
|
--per_device_eval_batch_size="32" \ |
|
--learning_rate="1e-4" \ |
|
--warmup_steps="500" \ |
|
--evaluation_strategy="steps" \ |
|
--save_steps="5000" \ |
|
--eval_steps="5000" \ |
|
--logging_steps="1000" \ |
|
--save_total_limit="3" \ |
|
--freeze_feature_extractor \ |
|
--activation_dropout="0.055" \ |
|
--attention_dropout="0.094" \ |
|
--feat_proj_dropout="0.04" \ |
|
--layerdrop="0.04" \ |
|
--mask_time_prob="0.08" \ |
|
--gradient_checkpointing="1" \ |
|
--fp16 \ |
|
--do_train \ |
|
--do_eval \ |
|
--dataloader_num_workers="16" \ |
|
--group_by_length |
|
``` |
|
|