djinn

djinn is a merge of the following models using LazyMergekit:

🧩 Configuration

merge_method: linear
parameters:
  weight: 1.0 
slices:
  - sources:
      - model: CultriX/NeuralTrix-7B-dpo # embed_tokens comes along with the ride with whatever is the first layer
        layer_range: [0, 1]
      - model: paulml/DPOB-INMTOB-7B # add dummy second model with 0 weight so tokenizer-based merge routine is invoked for embed_tokens
        layer_range: [0, 1]
        parameters:
          weight: 0
  - sources:
      - model: cognitivecomputations/dolphin-2.1-mistral-7b
        layer_range: [0, 8]
  - sources:
      - model: bardsai/jaskier-7b-dpo-v5.6
        layer_range: [8, 16]
  - sources:
      - model: paulml/OGNO-7B
        layer_range: [16, 24]
  - sources:
      - model: argilla/distilabeled-OpenHermes-2.5-Mistral-7B
        layer_range: [24, 31]
  - sources: # same as above, but for lm_head with the last layer
      - model: CultriX/NeuralTrix-7B-dpo
        layer_range: [31, 32]
      - model: paulml/DPOB-INMTOB-7B
        layer_range: [31, 32]
        parameters:
          weight: 0
dtype: float16
tokenizer_source: model:cognitivecomputations/dolphin-2.1-mistral-7b

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "mayacinka/djinn"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Downloads last month
6
Safetensors
Model size
7.46B params
Tensor type
FP16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for mayacinka/djinn