|
--- |
|
license: cc-by-sa-4.0 |
|
--- |
|
|
|
# **koOpenChat-sftπ§** |
|
|
|
## Support Me |
|
μλνΈλΌλ κ°μΈ νλ‘μ νΈλ‘, 1μΈμ μμμΌλ‘ κ°λ°λκ³ μμ΅λλ€. λͺ¨λΈμ΄ λ§μμ λμ
¨λ€λ©΄ μ½κ°μ μ°κ΅¬λΉ μ§μμ μ΄λ¨κΉμ? |
|
[<img src="https://cdn.buymeacoffee.com/buttons/default-orange.png" alt="Buy me a Coffee" width="217" height="50">](https://www.buymeacoffee.com/mwell) |
|
|
|
Wanna be a sponser? (Please) Contact me on Telegram **AlzarTakkarsen** |
|
|
|
|
|
# **Model Details** |
|
**Base Model** |
|
OpenChat3.5 |
|
|
|
**Trained On** |
|
A100 80GB * 1 |
|
|
|
**Instruction format** |
|
|
|
It follows [ChatML](https://github.com/openai/openai-python/blob/main/chatml.md) format and **Alpaca(No-Input)** format. |
|
|
|
# **Model Benchmark** |
|
None |
|
|
|
# **Implementation Code** |
|
|
|
Since, chat_template already contains insturction format above. |
|
You can use the code below. |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
device = "cuda" # the device to load the model onto |
|
|
|
model = AutoModelForCausalLM.from_pretrained("maywell/koOpenChat-sft") |
|
tokenizer = AutoTokenizer.from_pretrained("maywell/koOpenChat-sft") |
|
|
|
messages = [ |
|
{"role": "user", "content": "λ°λλλ μλ νμμμ΄μΌ?"}, |
|
] |
|
|
|
encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt") |
|
|
|
model_inputs = encodeds.to(device) |
|
model.to(device) |
|
|
|
generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True) |
|
decoded = tokenizer.batch_decode(generated_ids) |
|
print(decoded[0]) |
|
``` |
|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) |
|
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_maywell__koOpenChat-sft) |
|
|
|
| Metric | Value | |
|
|-----------------------|---------------------------| |
|
| Avg. | 51.36 | |
|
| ARC (25-shot) | 59.81 | |
|
| HellaSwag (10-shot) | 78.73 | |
|
| MMLU (5-shot) | 61.32 | |
|
| TruthfulQA (0-shot) | 51.24 | |
|
| Winogrande (5-shot) | 76.4 | |
|
| GSM8K (5-shot) | 24.18 | |
|
| DROP (3-shot) | 7.82 | |
|
|