MoDE_LIBERO_10 / config.yaml
mbreuss's picture
Create config.yaml
e18392c verified
callbacks:
rollout_lh:
_target_: mode.rollout.libero_rollout.RolloutLibero
_recursive_: false
env_cfg:
_target_: mode.wrappers.hulc_wrapper.HulcWrapper
skip_epochs: ${rollout_lh_skip_epochs}
benchmark_name: ${libero_benchmark}
rollout_freq: 10
num_videos: 0
num_sequences: 50
max_steps: 600
empty_cache: false
debug: false
n_eval: 20
num_procs: 10
use_mp: false
task_embedding_format: clip
device: ${device}
checkpoint:
_target_: pytorch_lightning.callbacks.ModelCheckpoint
save_top_k: 1
verbose: true
monitor: eval_lh/avg_seq_len
mode: max
dirpath: saved_models
filename: '{epoch:02d}_{eval_lh/avg_seq_len:.2f}'
every_n_epochs: ${callbacks.rollout_lh.rollout_freq}
ema:
_target_: mode.callbacks.ema.EMA
decay: 0.999
start_step: 0
save_ema_weights_in_callback_state: true
evaluate_ema_weights_instead: true
power: 0.6666666666666666
inv_gamma: 1.0
min_value: 0.0
max_value: 0.9999
datamodule:
datasets:
lang_dataset:
_target_: mode.datasets.libero_dataset.LiberoMultitaskDataset
key: lang
benchmark_name: ${libero_benchmark}
batch_size: ${batch_size}
proprio_state: ${datamodule.proprioception_dims}
obs_space: ${datamodule.observation_space}
num_workers: ${num_workers}
action_seq_len: ${act_seq_len}
obs_seq_len: ${obs_seq_len}
split_ratio: 0.0
transforms:
train:
rgb_static:
- _target_: torchvision.transforms.Resize
size: 224
antialias: true
- _target_: mode.utils.transforms.RandomShiftsAug
pad: 10
- _target_: mode.utils.transforms.ScaleImageTensor
- _target_: torchvision.transforms.Normalize
mean:
- 0.48145466
- 0.4578275
- 0.40821073
std:
- 0.26862954
- 0.26130258
- 0.27577711
rgb_gripper:
- _target_: torchvision.transforms.Resize
size: 112
antialias: true
- _target_: mode.utils.transforms.RandomShiftsAug
pad: 4
- _target_: mode.utils.transforms.ScaleImageTensor
- _target_: torchvision.transforms.Normalize
mean:
- 0.48145466
- 0.4578275
- 0.40821073
std:
- 0.26862954
- 0.26130258
- 0.27577711
val:
rgb_static:
- _target_: torchvision.transforms.Resize
size: 224
antialias: true
- _target_: mode.utils.transforms.ScaleImageTensor
- _target_: torchvision.transforms.Normalize
mean:
- 0.48145466
- 0.4578275
- 0.40821073
std:
- 0.26862954
- 0.26130258
- 0.27577711
rgb_gripper:
- _target_: torchvision.transforms.Resize
size: 112
antialias: true
- _target_: mode.utils.transforms.ScaleImageTensor
- _target_: torchvision.transforms.Normalize
mean:
- 0.48145466
- 0.4578275
- 0.40821073
std:
- 0.26862954
- 0.26130258
- 0.27577711
_target_: mode.datasets.libero_data_module.LiberoDataModule
_recursive_: false
root_data_dir: ${root_data_dir}
action_space: 7
shuffle_val: false
benchmark_name: ${libero_benchmark}
observation_space:
rgb_obs:
- agentview_rgb
- eye_in_hand_rgb
depth_obs: []
state_obs:
- gripper_states
- joint_states
actions:
- rel_actions
language:
- language
proprioception_dims: None
model:
language_goal:
_target_: mode.models.networks.clip_lang_encoder.LangClip
_recursive_: false
model_name: ${clip_lang_model_name}
model:
_target_: mode.models.edm_diffusion.score_wrappers.GCDenoiser
_recursive_: false
sigma_data: ${model.sigma_data}
inner_model:
_target_: mode.models.networks.modedit.MoDeDiT
action_dim: ${datamodule.action_space}
goal_dim: ${model.cond_dim}
obs_dim: ${obs_dim}
goal_conditioned: true
causal: true
use_custom_attn_mask: false
use_proprio: ${model.use_proprio}
state_dim: ${proprio_dims}
embed_dim: ${model.latent_dim}
n_layers: 12
goal_seq_len: 1
obs_seq_len: ${obs_seq_len}
action_seq_len: ${act_seq_len}
embed_pdrob: 0
goal_drop: 0.1
attn_pdrop: 0.3
mlp_pdrop: 0.1
n_heads: 8
device: ${device}
linear_output: true
cond_router: true
num_experts: 4
top_k: 2
router_normalize: true
use_goal_in_routing: false
use_argmax: false
use_shared_expert: false
use_noise_token_as_input: true
init_style: olmoe
_target_: mode.models.mode_agent.MoDEAgent
_recursive_: false
multistep: ${multistep}
use_lr_scheduler: true
entropy_gamma: 0.0
router_z_delta: 0.0
use_proprio: false
seed: ${seed}
sampler_type: ddim
num_sampling_steps: 5
sigma_data: 0.5
sigma_min: 0.001
sigma_max: 80
noise_scheduler: exponential
sigma_sample_density_type: loglogistic
ckpt_path: /home/reuss/code/MeDiT_Policy/convert_weights/mode_first_run
start_from_pretrained: true
act_window_size: ${act_seq_len}
latent_dim: 1024
obs_enc_dim: ${obs_dim}
cond_dim: 512
resnet_type: '50'
optimizer:
_target_: torch.optim.AdamW
transformer_weight_decay: 0.05
obs_encoder_weight_decay: 0.05
learning_rate: 0.0001
betas:
- 0.9
- 0.95
lr_scheduler:
lr_scheduler:
init_lr: 0.0001
init_lr_scale: 0.1
final_lr_scale: 1.0e-06
total_steps: 40000
phase_ratio: (0.02, 0.08, 0.9)
lr: 0.0001
root_data_dir: /home/yagmurlu/code/MoDE_Calvin/dataset/task_ABC_D
lang_folder: lang_clip_resnet50
vis_clip_model_name: ViT-B/16
clip_lang_model_name: ViT-B/32
log_dir: ./logs
slurm: false
future_range: 29
seed: 242
device: cuda
batch_size: 128
devices: 2
goal_window_size: 1
act_dim: 7
proprio_dims: 9
obs_dim: 512
goal_dim: 512
obs_seq_len: 1
act_seq_len: 10
multistep: ${act_seq_len}
p_last_state: 0
gen_img_res: 112
max_epochs: 10
rollout_lh_skip_epochs: 9
num_workers: 1
benchmark_name: ${libero_benchmark}
libero_benchmark: libero_10
trainer:
gpus: ${devices}
precision: bf16
max_epochs: ${max_epochs}
sync_batchnorm: false
accelerator: auto
limit_train_batches: 1000
limit_val_batches: 4
logger:
_target_: pytorch_lightning.loggers.WandbLogger
save_dir: .
name: logger
group: mode
log_model: false
project: ${libero_benchmark}
entity: bennoq
id: ???