File size: 24,208 Bytes
d1ceb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Contains pytorch-specific helpers."""

import importlib
import json
import os
import re
from collections import defaultdict
from functools import lru_cache
from pathlib import Path
from typing import TYPE_CHECKING, Dict, List, Optional, Set, Tuple, Union

from .. import constants, logging
from ._base import MAX_SHARD_SIZE, StateDictSplit, split_state_dict_into_shards_factory


logger = logging.get_logger(__file__)

if TYPE_CHECKING:
    import torch


def save_torch_model(
    model: "torch.nn.Module",
    save_directory: Union[str, Path],
    *,
    filename_pattern: Optional[str] = None,
    force_contiguous: bool = True,
    max_shard_size: Union[int, str] = MAX_SHARD_SIZE,
    metadata: Optional[Dict[str, str]] = None,
    safe_serialization: bool = True,
):
    """
    Saves a given torch model to disk, handling sharding and shared tensors issues.

    See also [`save_torch_state_dict`] to save a state dict with more flexibility.

    For more information about tensor sharing, check out [this guide](https://huggingface.co/docs/safetensors/torch_shared_tensors).

    The model state dictionary is split into shards so that each shard is smaller than a given size. The shards are
    saved in the `save_directory` with the given `filename_pattern`. If the model is too big to fit in a single shard,
    an index file is saved in the `save_directory` to indicate where each tensor is saved. This helper uses
    [`split_torch_state_dict_into_shards`] under the hood. If `safe_serialization` is `True`, the shards are saved as
    safetensors (the default). Otherwise, the shards are saved as pickle.

    Before saving the model, the `save_directory` is cleaned from any previous shard files.

    <Tip warning={true}>

    If one of the model's tensor is bigger than `max_shard_size`, it will end up in its own shard which will have a
    size greater than `max_shard_size`.

    </Tip>

    Args:
        model (`torch.nn.Module`):
            The model to save on disk.
        save_directory (`str` or `Path`):
            The directory in which the model will be saved.
        filename_pattern (`str`, *optional*):
            The pattern to generate the files names in which the model will be saved. Pattern must be a string that
            can be formatted with `filename_pattern.format(suffix=...)` and must contain the keyword `suffix`
            Defaults to `"model{suffix}.safetensors"` or `pytorch_model{suffix}.bin` depending on `safe_serialization`
            parameter.
        force_contiguous (`boolean`, *optional*):
            Forcing the state_dict to be saved as contiguous tensors. This has no effect on the correctness of the
            model, but it could potentially change performance if the layout of the tensor was chosen specifically for
            that reason. Defaults to `True`.
        max_shard_size (`int` or `str`, *optional*):
            The maximum size of each shard, in bytes. Defaults to 5GB.
        metadata (`Dict[str, str]`, *optional*):
            Extra information to save along with the model. Some metadata will be added for each dropped tensors.
            This information will not be enough to recover the entire shared structure but might help understanding
            things.
        safe_serialization (`bool`, *optional*):
            Whether to save as safetensors, which is the default behavior. If `False`, the shards are saved as pickle.
            Safe serialization is recommended for security reasons. Saving as pickle is deprecated and will be removed
            in a future version.

    Example:

    ```py
    >>> from huggingface_hub import save_torch_model
    >>> model = ... # A PyTorch model

    # Save state dict to "path/to/folder". The model will be split into shards of 5GB each and saved as safetensors.
    >>> save_torch_model(model, "path/to/folder")

    # Load model back
    >>> from huggingface_hub import load_torch_model  # TODO
    >>> load_torch_model(model, "path/to/folder")
    >>>
    ```
    """
    save_torch_state_dict(
        state_dict=model.state_dict(),
        filename_pattern=filename_pattern,
        force_contiguous=force_contiguous,
        max_shard_size=max_shard_size,
        metadata=metadata,
        safe_serialization=safe_serialization,
        save_directory=save_directory,
    )


def save_torch_state_dict(
    state_dict: Dict[str, "torch.Tensor"],
    save_directory: Union[str, Path],
    *,
    filename_pattern: Optional[str] = None,
    force_contiguous: bool = True,
    max_shard_size: Union[int, str] = MAX_SHARD_SIZE,
    metadata: Optional[Dict[str, str]] = None,
    safe_serialization: bool = True,
) -> None:
    """
    Save a model state dictionary to the disk, handling sharding and shared tensors issues.

    See also [`save_torch_model`] to directly save a PyTorch model.

    For more information about tensor sharing, check out [this guide](https://huggingface.co/docs/safetensors/torch_shared_tensors).

    The model state dictionary is split into shards so that each shard is smaller than a given size. The shards are
    saved in the `save_directory` with the given `filename_pattern`. If the model is too big to fit in a single shard,
    an index file is saved in the `save_directory` to indicate where each tensor is saved. This helper uses
    [`split_torch_state_dict_into_shards`] under the hood. If `safe_serialization` is `True`, the shards are saved as
    safetensors (the default). Otherwise, the shards are saved as pickle.

    Before saving the model, the `save_directory` is cleaned from any previous shard files.

    <Tip warning={true}>

    If one of the model's tensor is bigger than `max_shard_size`, it will end up in its own shard which will have a
    size greater than `max_shard_size`.

    </Tip>

    Args:
        state_dict (`Dict[str, torch.Tensor]`):
            The state dictionary to save.
        save_directory (`str` or `Path`):
            The directory in which the model will be saved.
        filename_pattern (`str`, *optional*):
            The pattern to generate the files names in which the model will be saved. Pattern must be a string that
            can be formatted with `filename_pattern.format(suffix=...)` and must contain the keyword `suffix`
            Defaults to `"model{suffix}.safetensors"` or `pytorch_model{suffix}.bin` depending on `safe_serialization`
            parameter.
        force_contiguous (`boolean`, *optional*):
            Forcing the state_dict to be saved as contiguous tensors. This has no effect on the correctness of the
            model, but it could potentially change performance if the layout of the tensor was chosen specifically for
            that reason. Defaults to `True`.
        max_shard_size (`int` or `str`, *optional*):
            The maximum size of each shard, in bytes. Defaults to 5GB.
        metadata (`Dict[str, str]`, *optional*):
            Extra information to save along with the model. Some metadata will be added for each dropped tensors.
            This information will not be enough to recover the entire shared structure but might help understanding
            things.
        safe_serialization (`bool`, *optional*):
            Whether to save as safetensors, which is the default behavior. If `False`, the shards are saved as pickle.
            Safe serialization is recommended for security reasons. Saving as pickle is deprecated and will be removed
            in a future version.

    Example:

    ```py
    >>> from huggingface_hub import save_torch_state_dict
    >>> model = ... # A PyTorch model

    # Save state dict to "path/to/folder". The model will be split into shards of 5GB each and saved as safetensors.
    >>> state_dict = model_to_save.state_dict()
    >>> save_torch_state_dict(state_dict, "path/to/folder")
    ```
    """
    save_directory = str(save_directory)

    if filename_pattern is None:
        filename_pattern = (
            constants.SAFETENSORS_WEIGHTS_FILE_PATTERN
            if safe_serialization
            else constants.PYTORCH_WEIGHTS_FILE_PATTERN
        )

    # Imports correct library
    if safe_serialization:
        try:
            from safetensors.torch import save_file as save_file_fn
        except ImportError as e:
            raise ImportError(
                "Please install `safetensors` to use safe serialization. "
                "You can install it with `pip install safetensors`."
            ) from e

    else:
        from torch import save as save_file_fn  # type: ignore[assignment]

        logger.warning(
            "You are using unsafe serialization. Due to security reasons, it is recommended not to load "
            "pickled models from untrusted sources. If you intend to share your model, we strongly recommend "
            "using safe serialization by installing `safetensors` with `pip install safetensors`."
        )

    # Clean state dict for safetensors
    if metadata is None:
        metadata = {}
    if safe_serialization:
        state_dict = _clean_state_dict_for_safetensors(state_dict, metadata, force_contiguous=force_contiguous)

    # Split dict
    state_dict_split = split_torch_state_dict_into_shards(
        state_dict, filename_pattern=filename_pattern, max_shard_size=max_shard_size
    )

    # Clean the folder from previous save
    existing_files_regex = re.compile(filename_pattern.format(suffix=r"(-\d{5}-of-\d{5})?") + r"(\.index\.json)?")
    for filename in os.listdir(save_directory):
        if existing_files_regex.match(filename):
            try:
                logger.debug(f"Removing existing file '{filename}' from folder.")
                os.remove(os.path.join(save_directory, filename))
            except Exception as e:
                logger.warning(f"Error when trying to remove existing '{filename}' from folder: {e}. Continuing...")

    # Save each shard
    per_file_metadata = {"format": "pt"}
    if not state_dict_split.is_sharded:
        per_file_metadata.update(metadata)
    safe_file_kwargs = {"metadata": per_file_metadata} if safe_serialization else {}
    for filename, tensors in state_dict_split.filename_to_tensors.items():
        shard = {tensor: state_dict[tensor] for tensor in tensors}
        save_file_fn(shard, os.path.join(save_directory, filename), **safe_file_kwargs)
        logger.debug(f"Shard saved to {filename}")

    # Save the index (if any)
    if state_dict_split.is_sharded:
        index_path = filename_pattern.format(suffix="") + ".index.json"
        index = {
            "metadata": {**state_dict_split.metadata, **metadata},
            "weight_map": state_dict_split.tensor_to_filename,
        }
        with open(os.path.join(save_directory, index_path), "w") as f:
            json.dump(index, f, indent=2)
        logger.info(
            f"The model is bigger than the maximum size per checkpoint ({max_shard_size}). "
            f"Model weighs have been saved in {len(state_dict_split.filename_to_tensors)} checkpoint shards. "
            f"You can find where each parameters has been saved in the index located at {index_path}."
        )

    logger.info(f"Model weights successfully saved to {save_directory}!")


def split_torch_state_dict_into_shards(
    state_dict: Dict[str, "torch.Tensor"],
    *,
    filename_pattern: str = constants.SAFETENSORS_WEIGHTS_FILE_PATTERN,
    max_shard_size: Union[int, str] = MAX_SHARD_SIZE,
) -> StateDictSplit:
    """
    Split a model state dictionary in shards so that each shard is smaller than a given size.

    The shards are determined by iterating through the `state_dict` in the order of its keys. There is no optimization
    made to make each shard as close as possible to the maximum size passed. For example, if the limit is 10GB and we
    have tensors of sizes [6GB, 6GB, 2GB, 6GB, 2GB, 2GB] they will get sharded as [6GB], [6+2GB], [6+2+2GB] and not
    [6+2+2GB], [6+2GB], [6GB].


    <Tip>

    To save a model state dictionary to the disk, see [`save_torch_state_dict`]. This helper uses
    `split_torch_state_dict_into_shards` under the hood.

    </Tip>

    <Tip warning={true}>

    If one of the model's tensor is bigger than `max_shard_size`, it will end up in its own shard which will have a
    size greater than `max_shard_size`.

    </Tip>

    Args:
        state_dict (`Dict[str, torch.Tensor]`):
            The state dictionary to save.
        filename_pattern (`str`, *optional*):
            The pattern to generate the files names in which the model will be saved. Pattern must be a string that
            can be formatted with `filename_pattern.format(suffix=...)` and must contain the keyword `suffix`
            Defaults to `"model{suffix}.safetensors"`.
        max_shard_size (`int` or `str`, *optional*):
            The maximum size of each shard, in bytes. Defaults to 5GB.

    Returns:
        [`StateDictSplit`]: A `StateDictSplit` object containing the shards and the index to retrieve them.

    Example:
    ```py
    >>> import json
    >>> import os
    >>> from safetensors.torch import save_file as safe_save_file
    >>> from huggingface_hub import split_torch_state_dict_into_shards

    >>> def save_state_dict(state_dict: Dict[str, torch.Tensor], save_directory: str):
    ...     state_dict_split = split_torch_state_dict_into_shards(state_dict)
    ...     for filename, tensors in state_dict_split.filename_to_tensors.items():
    ...         shard = {tensor: state_dict[tensor] for tensor in tensors}
    ...         safe_save_file(
    ...             shard,
    ...             os.path.join(save_directory, filename),
    ...             metadata={"format": "pt"},
    ...         )
    ...     if state_dict_split.is_sharded:
    ...         index = {
    ...             "metadata": state_dict_split.metadata,
    ...             "weight_map": state_dict_split.tensor_to_filename,
    ...         }
    ...         with open(os.path.join(save_directory, "model.safetensors.index.json"), "w") as f:
    ...             f.write(json.dumps(index, indent=2))
    ```
    """
    return split_state_dict_into_shards_factory(
        state_dict,
        max_shard_size=max_shard_size,
        filename_pattern=filename_pattern,
        get_storage_size=get_torch_storage_size,
        get_storage_id=get_torch_storage_id,
    )


def get_torch_storage_id(tensor: "torch.Tensor") -> Tuple["torch.device", int, int]:
    """
    Return unique identifier to a tensor storage.

    Multiple different tensors can share the same underlying storage. For
    example, "meta" tensors all share the same storage, and thus their identifier will all be equal. This identifier is
    guaranteed to be unique and constant for this tensor's storage during its lifetime. Two tensor storages with
    non-overlapping lifetimes may have the same id.

    Taken from https://github.com/huggingface/transformers/blob/1ecf5f7c982d761b4daaa96719d162c324187c64/src/transformers/pytorch_utils.py#L278.
    """
    if tensor.device.type == "xla" and is_torch_tpu_available():
        # NOTE: xla tensors dont have storage
        # use some other unique id to distinguish.
        # this is a XLA tensor, it must be created using torch_xla's
        # device. So the following import is safe:
        import torch_xla

        unique_id = torch_xla._XLAC._xla_get_tensor_id(tensor)
    else:
        unique_id = storage_ptr(tensor)

    return tensor.device, unique_id, get_torch_storage_size(tensor)


def get_torch_storage_size(tensor: "torch.Tensor") -> int:
    """
    Taken from https://github.com/huggingface/safetensors/blob/08db34094e9e59e2f9218f2df133b7b4aaff5a99/bindings/python/py_src/safetensors/torch.py#L31C1-L41C59
    """
    try:
        return tensor.untyped_storage().nbytes()
    except AttributeError:
        # Fallback for torch==1.10
        try:
            return tensor.storage().size() * _get_dtype_size(tensor.dtype)
        except NotImplementedError:
            # Fallback for meta storage
            # On torch >=2.0 this is the tensor size
            return tensor.nelement() * _get_dtype_size(tensor.dtype)


@lru_cache()
def is_torch_tpu_available(check_device=True):
    """
    Checks if `torch_xla` is installed and potentially if a TPU is in the environment

    Taken from https://github.com/huggingface/transformers/blob/1ecf5f7c982d761b4daaa96719d162c324187c64/src/transformers/utils/import_utils.py#L463.
    """
    if importlib.util.find_spec("torch_xla") is not None:
        if check_device:
            # We need to check if `xla_device` can be found, will raise a RuntimeError if not
            try:
                import torch_xla.core.xla_model as xm

                _ = xm.xla_device()
                return True
            except RuntimeError:
                return False
        return True
    return False


def storage_ptr(tensor: "torch.Tensor") -> int:
    """
    Taken from https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/py_src/safetensors/torch.py#L11.
    """
    try:
        return tensor.untyped_storage().data_ptr()
    except Exception:
        # Fallback for torch==1.10
        try:
            return tensor.storage().data_ptr()
        except NotImplementedError:
            # Fallback for meta storage
            return 0


def _clean_state_dict_for_safetensors(
    state_dict: Dict[str, "torch.Tensor"], metadata: Dict[str, str], force_contiguous: bool = True
):
    """Remove shared tensors from state_dict and update metadata accordingly (for reloading).

    Warning: `state_dict` and `metadata` are mutated in-place!

    Taken from https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/py_src/safetensors/torch.py#L155.
    """
    to_removes = _remove_duplicate_names(state_dict)
    for kept_name, to_remove_group in to_removes.items():
        for to_remove in to_remove_group:
            if metadata is None:
                metadata = {}

            if to_remove not in metadata:
                # Do not override user data
                metadata[to_remove] = kept_name
            del state_dict[to_remove]
    if force_contiguous:
        state_dict = {k: v.contiguous() for k, v in state_dict.items()}
    return state_dict


def _end_ptr(tensor: "torch.Tensor") -> int:
    """
    Taken from https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/py_src/safetensors/torch.py#L23.
    """
    if tensor.nelement():
        stop = tensor.view(-1)[-1].data_ptr() + _get_dtype_size(tensor.dtype)
    else:
        stop = tensor.data_ptr()
    return stop


def _filter_shared_not_shared(tensors: List[Set[str]], state_dict: Dict[str, "torch.Tensor"]) -> List[Set[str]]:
    """
    Taken from https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/py_src/safetensors/torch.py#L44
    """
    filtered_tensors = []
    for shared in tensors:
        if len(shared) < 2:
            filtered_tensors.append(shared)
            continue

        areas = []
        for name in shared:
            tensor = state_dict[name]
            areas.append((tensor.data_ptr(), _end_ptr(tensor), name))
        areas.sort()

        _, last_stop, last_name = areas[0]
        filtered_tensors.append({last_name})
        for start, stop, name in areas[1:]:
            if start >= last_stop:
                filtered_tensors.append({name})
            else:
                filtered_tensors[-1].add(name)
            last_stop = stop

    return filtered_tensors


def _find_shared_tensors(state_dict: Dict[str, "torch.Tensor"]) -> List[Set[str]]:
    """
    Taken from https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/py_src/safetensors/torch.py#L69.
    """
    import torch

    tensors_dict = defaultdict(set)
    for k, v in state_dict.items():
        if v.device != torch.device("meta") and storage_ptr(v) != 0 and get_torch_storage_size(v) != 0:
            # Need to add device as key because of multiple GPU.
            tensors_dict[(v.device, storage_ptr(v), get_torch_storage_size(v))].add(k)
    tensors = list(sorted(tensors_dict.values()))
    tensors = _filter_shared_not_shared(tensors, state_dict)
    return tensors


def _is_complete(tensor: "torch.Tensor") -> bool:
    """
    Taken from https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/py_src/safetensors/torch.py#L80
    """
    return tensor.data_ptr() == storage_ptr(tensor) and tensor.nelement() * _get_dtype_size(
        tensor.dtype
    ) == get_torch_storage_size(tensor)


def _remove_duplicate_names(
    state_dict: Dict[str, "torch.Tensor"],
    *,
    preferred_names: Optional[List[str]] = None,
    discard_names: Optional[List[str]] = None,
) -> Dict[str, List[str]]:
    """
    Taken from https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/py_src/safetensors/torch.py#L80
    """
    if preferred_names is None:
        preferred_names = []
    unique_preferred_names = set(preferred_names)
    if discard_names is None:
        discard_names = []
    unique_discard_names = set(discard_names)

    shareds = _find_shared_tensors(state_dict)
    to_remove = defaultdict(list)
    for shared in shareds:
        complete_names = set([name for name in shared if _is_complete(state_dict[name])])
        if not complete_names:
            raise RuntimeError(
                "Error while trying to find names to remove to save state dict, but found no suitable name to keep"
                f" for saving amongst: {shared}. None is covering the entire storage. Refusing to save/load the model"
                " since you could be storing much more memory than needed. Please refer to"
                " https://huggingface.co/docs/safetensors/torch_shared_tensors for more information. Or open an"
                " issue."
            )

        keep_name = sorted(list(complete_names))[0]

        # Mechanism to preferentially select keys to keep
        # coming from the on-disk file to allow
        # loading models saved with a different choice
        # of keep_name
        preferred = complete_names.difference(unique_discard_names)
        if preferred:
            keep_name = sorted(list(preferred))[0]

        if unique_preferred_names:
            preferred = unique_preferred_names.intersection(complete_names)
            if preferred:
                keep_name = sorted(list(preferred))[0]
        for name in sorted(shared):
            if name != keep_name:
                to_remove[keep_name].append(name)
    return to_remove


@lru_cache()
def _get_dtype_size(dtype: "torch.dtype") -> int:
    """
    Taken from https://github.com/huggingface/safetensors/blob/08db34094e9e59e2f9218f2df133b7b4aaff5a99/bindings/python/py_src/safetensors/torch.py#L344
    """
    import torch

    # torch.float8 formats require 2.1; we do not support these dtypes on earlier versions
    _float8_e4m3fn = getattr(torch, "float8_e4m3fn", None)
    _float8_e5m2 = getattr(torch, "float8_e5m2", None)
    _SIZE = {
        torch.int64: 8,
        torch.float32: 4,
        torch.int32: 4,
        torch.bfloat16: 2,
        torch.float16: 2,
        torch.int16: 2,
        torch.uint8: 1,
        torch.int8: 1,
        torch.bool: 1,
        torch.float64: 8,
        _float8_e4m3fn: 1,
        _float8_e5m2: 1,
    }
    return _SIZE[dtype]