File size: 24,208 Bytes
d1ceb73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 |
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Contains pytorch-specific helpers."""
import importlib
import json
import os
import re
from collections import defaultdict
from functools import lru_cache
from pathlib import Path
from typing import TYPE_CHECKING, Dict, List, Optional, Set, Tuple, Union
from .. import constants, logging
from ._base import MAX_SHARD_SIZE, StateDictSplit, split_state_dict_into_shards_factory
logger = logging.get_logger(__file__)
if TYPE_CHECKING:
import torch
def save_torch_model(
model: "torch.nn.Module",
save_directory: Union[str, Path],
*,
filename_pattern: Optional[str] = None,
force_contiguous: bool = True,
max_shard_size: Union[int, str] = MAX_SHARD_SIZE,
metadata: Optional[Dict[str, str]] = None,
safe_serialization: bool = True,
):
"""
Saves a given torch model to disk, handling sharding and shared tensors issues.
See also [`save_torch_state_dict`] to save a state dict with more flexibility.
For more information about tensor sharing, check out [this guide](https://huggingface.co/docs/safetensors/torch_shared_tensors).
The model state dictionary is split into shards so that each shard is smaller than a given size. The shards are
saved in the `save_directory` with the given `filename_pattern`. If the model is too big to fit in a single shard,
an index file is saved in the `save_directory` to indicate where each tensor is saved. This helper uses
[`split_torch_state_dict_into_shards`] under the hood. If `safe_serialization` is `True`, the shards are saved as
safetensors (the default). Otherwise, the shards are saved as pickle.
Before saving the model, the `save_directory` is cleaned from any previous shard files.
<Tip warning={true}>
If one of the model's tensor is bigger than `max_shard_size`, it will end up in its own shard which will have a
size greater than `max_shard_size`.
</Tip>
Args:
model (`torch.nn.Module`):
The model to save on disk.
save_directory (`str` or `Path`):
The directory in which the model will be saved.
filename_pattern (`str`, *optional*):
The pattern to generate the files names in which the model will be saved. Pattern must be a string that
can be formatted with `filename_pattern.format(suffix=...)` and must contain the keyword `suffix`
Defaults to `"model{suffix}.safetensors"` or `pytorch_model{suffix}.bin` depending on `safe_serialization`
parameter.
force_contiguous (`boolean`, *optional*):
Forcing the state_dict to be saved as contiguous tensors. This has no effect on the correctness of the
model, but it could potentially change performance if the layout of the tensor was chosen specifically for
that reason. Defaults to `True`.
max_shard_size (`int` or `str`, *optional*):
The maximum size of each shard, in bytes. Defaults to 5GB.
metadata (`Dict[str, str]`, *optional*):
Extra information to save along with the model. Some metadata will be added for each dropped tensors.
This information will not be enough to recover the entire shared structure but might help understanding
things.
safe_serialization (`bool`, *optional*):
Whether to save as safetensors, which is the default behavior. If `False`, the shards are saved as pickle.
Safe serialization is recommended for security reasons. Saving as pickle is deprecated and will be removed
in a future version.
Example:
```py
>>> from huggingface_hub import save_torch_model
>>> model = ... # A PyTorch model
# Save state dict to "path/to/folder". The model will be split into shards of 5GB each and saved as safetensors.
>>> save_torch_model(model, "path/to/folder")
# Load model back
>>> from huggingface_hub import load_torch_model # TODO
>>> load_torch_model(model, "path/to/folder")
>>>
```
"""
save_torch_state_dict(
state_dict=model.state_dict(),
filename_pattern=filename_pattern,
force_contiguous=force_contiguous,
max_shard_size=max_shard_size,
metadata=metadata,
safe_serialization=safe_serialization,
save_directory=save_directory,
)
def save_torch_state_dict(
state_dict: Dict[str, "torch.Tensor"],
save_directory: Union[str, Path],
*,
filename_pattern: Optional[str] = None,
force_contiguous: bool = True,
max_shard_size: Union[int, str] = MAX_SHARD_SIZE,
metadata: Optional[Dict[str, str]] = None,
safe_serialization: bool = True,
) -> None:
"""
Save a model state dictionary to the disk, handling sharding and shared tensors issues.
See also [`save_torch_model`] to directly save a PyTorch model.
For more information about tensor sharing, check out [this guide](https://huggingface.co/docs/safetensors/torch_shared_tensors).
The model state dictionary is split into shards so that each shard is smaller than a given size. The shards are
saved in the `save_directory` with the given `filename_pattern`. If the model is too big to fit in a single shard,
an index file is saved in the `save_directory` to indicate where each tensor is saved. This helper uses
[`split_torch_state_dict_into_shards`] under the hood. If `safe_serialization` is `True`, the shards are saved as
safetensors (the default). Otherwise, the shards are saved as pickle.
Before saving the model, the `save_directory` is cleaned from any previous shard files.
<Tip warning={true}>
If one of the model's tensor is bigger than `max_shard_size`, it will end up in its own shard which will have a
size greater than `max_shard_size`.
</Tip>
Args:
state_dict (`Dict[str, torch.Tensor]`):
The state dictionary to save.
save_directory (`str` or `Path`):
The directory in which the model will be saved.
filename_pattern (`str`, *optional*):
The pattern to generate the files names in which the model will be saved. Pattern must be a string that
can be formatted with `filename_pattern.format(suffix=...)` and must contain the keyword `suffix`
Defaults to `"model{suffix}.safetensors"` or `pytorch_model{suffix}.bin` depending on `safe_serialization`
parameter.
force_contiguous (`boolean`, *optional*):
Forcing the state_dict to be saved as contiguous tensors. This has no effect on the correctness of the
model, but it could potentially change performance if the layout of the tensor was chosen specifically for
that reason. Defaults to `True`.
max_shard_size (`int` or `str`, *optional*):
The maximum size of each shard, in bytes. Defaults to 5GB.
metadata (`Dict[str, str]`, *optional*):
Extra information to save along with the model. Some metadata will be added for each dropped tensors.
This information will not be enough to recover the entire shared structure but might help understanding
things.
safe_serialization (`bool`, *optional*):
Whether to save as safetensors, which is the default behavior. If `False`, the shards are saved as pickle.
Safe serialization is recommended for security reasons. Saving as pickle is deprecated and will be removed
in a future version.
Example:
```py
>>> from huggingface_hub import save_torch_state_dict
>>> model = ... # A PyTorch model
# Save state dict to "path/to/folder". The model will be split into shards of 5GB each and saved as safetensors.
>>> state_dict = model_to_save.state_dict()
>>> save_torch_state_dict(state_dict, "path/to/folder")
```
"""
save_directory = str(save_directory)
if filename_pattern is None:
filename_pattern = (
constants.SAFETENSORS_WEIGHTS_FILE_PATTERN
if safe_serialization
else constants.PYTORCH_WEIGHTS_FILE_PATTERN
)
# Imports correct library
if safe_serialization:
try:
from safetensors.torch import save_file as save_file_fn
except ImportError as e:
raise ImportError(
"Please install `safetensors` to use safe serialization. "
"You can install it with `pip install safetensors`."
) from e
else:
from torch import save as save_file_fn # type: ignore[assignment]
logger.warning(
"You are using unsafe serialization. Due to security reasons, it is recommended not to load "
"pickled models from untrusted sources. If you intend to share your model, we strongly recommend "
"using safe serialization by installing `safetensors` with `pip install safetensors`."
)
# Clean state dict for safetensors
if metadata is None:
metadata = {}
if safe_serialization:
state_dict = _clean_state_dict_for_safetensors(state_dict, metadata, force_contiguous=force_contiguous)
# Split dict
state_dict_split = split_torch_state_dict_into_shards(
state_dict, filename_pattern=filename_pattern, max_shard_size=max_shard_size
)
# Clean the folder from previous save
existing_files_regex = re.compile(filename_pattern.format(suffix=r"(-\d{5}-of-\d{5})?") + r"(\.index\.json)?")
for filename in os.listdir(save_directory):
if existing_files_regex.match(filename):
try:
logger.debug(f"Removing existing file '{filename}' from folder.")
os.remove(os.path.join(save_directory, filename))
except Exception as e:
logger.warning(f"Error when trying to remove existing '{filename}' from folder: {e}. Continuing...")
# Save each shard
per_file_metadata = {"format": "pt"}
if not state_dict_split.is_sharded:
per_file_metadata.update(metadata)
safe_file_kwargs = {"metadata": per_file_metadata} if safe_serialization else {}
for filename, tensors in state_dict_split.filename_to_tensors.items():
shard = {tensor: state_dict[tensor] for tensor in tensors}
save_file_fn(shard, os.path.join(save_directory, filename), **safe_file_kwargs)
logger.debug(f"Shard saved to {filename}")
# Save the index (if any)
if state_dict_split.is_sharded:
index_path = filename_pattern.format(suffix="") + ".index.json"
index = {
"metadata": {**state_dict_split.metadata, **metadata},
"weight_map": state_dict_split.tensor_to_filename,
}
with open(os.path.join(save_directory, index_path), "w") as f:
json.dump(index, f, indent=2)
logger.info(
f"The model is bigger than the maximum size per checkpoint ({max_shard_size}). "
f"Model weighs have been saved in {len(state_dict_split.filename_to_tensors)} checkpoint shards. "
f"You can find where each parameters has been saved in the index located at {index_path}."
)
logger.info(f"Model weights successfully saved to {save_directory}!")
def split_torch_state_dict_into_shards(
state_dict: Dict[str, "torch.Tensor"],
*,
filename_pattern: str = constants.SAFETENSORS_WEIGHTS_FILE_PATTERN,
max_shard_size: Union[int, str] = MAX_SHARD_SIZE,
) -> StateDictSplit:
"""
Split a model state dictionary in shards so that each shard is smaller than a given size.
The shards are determined by iterating through the `state_dict` in the order of its keys. There is no optimization
made to make each shard as close as possible to the maximum size passed. For example, if the limit is 10GB and we
have tensors of sizes [6GB, 6GB, 2GB, 6GB, 2GB, 2GB] they will get sharded as [6GB], [6+2GB], [6+2+2GB] and not
[6+2+2GB], [6+2GB], [6GB].
<Tip>
To save a model state dictionary to the disk, see [`save_torch_state_dict`]. This helper uses
`split_torch_state_dict_into_shards` under the hood.
</Tip>
<Tip warning={true}>
If one of the model's tensor is bigger than `max_shard_size`, it will end up in its own shard which will have a
size greater than `max_shard_size`.
</Tip>
Args:
state_dict (`Dict[str, torch.Tensor]`):
The state dictionary to save.
filename_pattern (`str`, *optional*):
The pattern to generate the files names in which the model will be saved. Pattern must be a string that
can be formatted with `filename_pattern.format(suffix=...)` and must contain the keyword `suffix`
Defaults to `"model{suffix}.safetensors"`.
max_shard_size (`int` or `str`, *optional*):
The maximum size of each shard, in bytes. Defaults to 5GB.
Returns:
[`StateDictSplit`]: A `StateDictSplit` object containing the shards and the index to retrieve them.
Example:
```py
>>> import json
>>> import os
>>> from safetensors.torch import save_file as safe_save_file
>>> from huggingface_hub import split_torch_state_dict_into_shards
>>> def save_state_dict(state_dict: Dict[str, torch.Tensor], save_directory: str):
... state_dict_split = split_torch_state_dict_into_shards(state_dict)
... for filename, tensors in state_dict_split.filename_to_tensors.items():
... shard = {tensor: state_dict[tensor] for tensor in tensors}
... safe_save_file(
... shard,
... os.path.join(save_directory, filename),
... metadata={"format": "pt"},
... )
... if state_dict_split.is_sharded:
... index = {
... "metadata": state_dict_split.metadata,
... "weight_map": state_dict_split.tensor_to_filename,
... }
... with open(os.path.join(save_directory, "model.safetensors.index.json"), "w") as f:
... f.write(json.dumps(index, indent=2))
```
"""
return split_state_dict_into_shards_factory(
state_dict,
max_shard_size=max_shard_size,
filename_pattern=filename_pattern,
get_storage_size=get_torch_storage_size,
get_storage_id=get_torch_storage_id,
)
def get_torch_storage_id(tensor: "torch.Tensor") -> Tuple["torch.device", int, int]:
"""
Return unique identifier to a tensor storage.
Multiple different tensors can share the same underlying storage. For
example, "meta" tensors all share the same storage, and thus their identifier will all be equal. This identifier is
guaranteed to be unique and constant for this tensor's storage during its lifetime. Two tensor storages with
non-overlapping lifetimes may have the same id.
Taken from https://github.com/huggingface/transformers/blob/1ecf5f7c982d761b4daaa96719d162c324187c64/src/transformers/pytorch_utils.py#L278.
"""
if tensor.device.type == "xla" and is_torch_tpu_available():
# NOTE: xla tensors dont have storage
# use some other unique id to distinguish.
# this is a XLA tensor, it must be created using torch_xla's
# device. So the following import is safe:
import torch_xla
unique_id = torch_xla._XLAC._xla_get_tensor_id(tensor)
else:
unique_id = storage_ptr(tensor)
return tensor.device, unique_id, get_torch_storage_size(tensor)
def get_torch_storage_size(tensor: "torch.Tensor") -> int:
"""
Taken from https://github.com/huggingface/safetensors/blob/08db34094e9e59e2f9218f2df133b7b4aaff5a99/bindings/python/py_src/safetensors/torch.py#L31C1-L41C59
"""
try:
return tensor.untyped_storage().nbytes()
except AttributeError:
# Fallback for torch==1.10
try:
return tensor.storage().size() * _get_dtype_size(tensor.dtype)
except NotImplementedError:
# Fallback for meta storage
# On torch >=2.0 this is the tensor size
return tensor.nelement() * _get_dtype_size(tensor.dtype)
@lru_cache()
def is_torch_tpu_available(check_device=True):
"""
Checks if `torch_xla` is installed and potentially if a TPU is in the environment
Taken from https://github.com/huggingface/transformers/blob/1ecf5f7c982d761b4daaa96719d162c324187c64/src/transformers/utils/import_utils.py#L463.
"""
if importlib.util.find_spec("torch_xla") is not None:
if check_device:
# We need to check if `xla_device` can be found, will raise a RuntimeError if not
try:
import torch_xla.core.xla_model as xm
_ = xm.xla_device()
return True
except RuntimeError:
return False
return True
return False
def storage_ptr(tensor: "torch.Tensor") -> int:
"""
Taken from https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/py_src/safetensors/torch.py#L11.
"""
try:
return tensor.untyped_storage().data_ptr()
except Exception:
# Fallback for torch==1.10
try:
return tensor.storage().data_ptr()
except NotImplementedError:
# Fallback for meta storage
return 0
def _clean_state_dict_for_safetensors(
state_dict: Dict[str, "torch.Tensor"], metadata: Dict[str, str], force_contiguous: bool = True
):
"""Remove shared tensors from state_dict and update metadata accordingly (for reloading).
Warning: `state_dict` and `metadata` are mutated in-place!
Taken from https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/py_src/safetensors/torch.py#L155.
"""
to_removes = _remove_duplicate_names(state_dict)
for kept_name, to_remove_group in to_removes.items():
for to_remove in to_remove_group:
if metadata is None:
metadata = {}
if to_remove not in metadata:
# Do not override user data
metadata[to_remove] = kept_name
del state_dict[to_remove]
if force_contiguous:
state_dict = {k: v.contiguous() for k, v in state_dict.items()}
return state_dict
def _end_ptr(tensor: "torch.Tensor") -> int:
"""
Taken from https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/py_src/safetensors/torch.py#L23.
"""
if tensor.nelement():
stop = tensor.view(-1)[-1].data_ptr() + _get_dtype_size(tensor.dtype)
else:
stop = tensor.data_ptr()
return stop
def _filter_shared_not_shared(tensors: List[Set[str]], state_dict: Dict[str, "torch.Tensor"]) -> List[Set[str]]:
"""
Taken from https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/py_src/safetensors/torch.py#L44
"""
filtered_tensors = []
for shared in tensors:
if len(shared) < 2:
filtered_tensors.append(shared)
continue
areas = []
for name in shared:
tensor = state_dict[name]
areas.append((tensor.data_ptr(), _end_ptr(tensor), name))
areas.sort()
_, last_stop, last_name = areas[0]
filtered_tensors.append({last_name})
for start, stop, name in areas[1:]:
if start >= last_stop:
filtered_tensors.append({name})
else:
filtered_tensors[-1].add(name)
last_stop = stop
return filtered_tensors
def _find_shared_tensors(state_dict: Dict[str, "torch.Tensor"]) -> List[Set[str]]:
"""
Taken from https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/py_src/safetensors/torch.py#L69.
"""
import torch
tensors_dict = defaultdict(set)
for k, v in state_dict.items():
if v.device != torch.device("meta") and storage_ptr(v) != 0 and get_torch_storage_size(v) != 0:
# Need to add device as key because of multiple GPU.
tensors_dict[(v.device, storage_ptr(v), get_torch_storage_size(v))].add(k)
tensors = list(sorted(tensors_dict.values()))
tensors = _filter_shared_not_shared(tensors, state_dict)
return tensors
def _is_complete(tensor: "torch.Tensor") -> bool:
"""
Taken from https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/py_src/safetensors/torch.py#L80
"""
return tensor.data_ptr() == storage_ptr(tensor) and tensor.nelement() * _get_dtype_size(
tensor.dtype
) == get_torch_storage_size(tensor)
def _remove_duplicate_names(
state_dict: Dict[str, "torch.Tensor"],
*,
preferred_names: Optional[List[str]] = None,
discard_names: Optional[List[str]] = None,
) -> Dict[str, List[str]]:
"""
Taken from https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/py_src/safetensors/torch.py#L80
"""
if preferred_names is None:
preferred_names = []
unique_preferred_names = set(preferred_names)
if discard_names is None:
discard_names = []
unique_discard_names = set(discard_names)
shareds = _find_shared_tensors(state_dict)
to_remove = defaultdict(list)
for shared in shareds:
complete_names = set([name for name in shared if _is_complete(state_dict[name])])
if not complete_names:
raise RuntimeError(
"Error while trying to find names to remove to save state dict, but found no suitable name to keep"
f" for saving amongst: {shared}. None is covering the entire storage. Refusing to save/load the model"
" since you could be storing much more memory than needed. Please refer to"
" https://huggingface.co/docs/safetensors/torch_shared_tensors for more information. Or open an"
" issue."
)
keep_name = sorted(list(complete_names))[0]
# Mechanism to preferentially select keys to keep
# coming from the on-disk file to allow
# loading models saved with a different choice
# of keep_name
preferred = complete_names.difference(unique_discard_names)
if preferred:
keep_name = sorted(list(preferred))[0]
if unique_preferred_names:
preferred = unique_preferred_names.intersection(complete_names)
if preferred:
keep_name = sorted(list(preferred))[0]
for name in sorted(shared):
if name != keep_name:
to_remove[keep_name].append(name)
return to_remove
@lru_cache()
def _get_dtype_size(dtype: "torch.dtype") -> int:
"""
Taken from https://github.com/huggingface/safetensors/blob/08db34094e9e59e2f9218f2df133b7b4aaff5a99/bindings/python/py_src/safetensors/torch.py#L344
"""
import torch
# torch.float8 formats require 2.1; we do not support these dtypes on earlier versions
_float8_e4m3fn = getattr(torch, "float8_e4m3fn", None)
_float8_e5m2 = getattr(torch, "float8_e5m2", None)
_SIZE = {
torch.int64: 8,
torch.float32: 4,
torch.int32: 4,
torch.bfloat16: 2,
torch.float16: 2,
torch.int16: 2,
torch.uint8: 1,
torch.int8: 1,
torch.bool: 1,
torch.float64: 8,
_float8_e4m3fn: 1,
_float8_e5m2: 1,
}
return _SIZE[dtype]
|