File size: 12,218 Bytes
d1ceb73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 |
import re
from itertools import zip_longest
from parso.python import tree
from jedi import debug
from jedi.inference.utils import PushBackIterator
from jedi.inference import analysis
from jedi.inference.lazy_value import LazyKnownValue, LazyKnownValues, \
LazyTreeValue, get_merged_lazy_value
from jedi.inference.names import ParamName, TreeNameDefinition, AnonymousParamName
from jedi.inference.base_value import NO_VALUES, ValueSet, ContextualizedNode
from jedi.inference.value import iterable
from jedi.inference.cache import inference_state_as_method_param_cache
def try_iter_content(types, depth=0):
"""Helper method for static analysis."""
if depth > 10:
# It's possible that a loop has references on itself (especially with
# CompiledValue). Therefore don't loop infinitely.
return
for typ in types:
try:
f = typ.py__iter__
except AttributeError:
pass
else:
for lazy_value in f():
try_iter_content(lazy_value.infer(), depth + 1)
class ParamIssue(Exception):
pass
def repack_with_argument_clinic(clinic_string):
"""
Transforms a function or method with arguments to the signature that is
given as an argument clinic notation.
Argument clinic is part of CPython and used for all the functions that are
implemented in C (Python 3.7):
str.split.__text_signature__
# Results in: '($self, /, sep=None, maxsplit=-1)'
"""
def decorator(func):
def wrapper(value, arguments):
try:
args = tuple(iterate_argument_clinic(
value.inference_state,
arguments,
clinic_string,
))
except ParamIssue:
return NO_VALUES
else:
return func(value, *args)
return wrapper
return decorator
def iterate_argument_clinic(inference_state, arguments, clinic_string):
"""Uses a list with argument clinic information (see PEP 436)."""
clinic_args = list(_parse_argument_clinic(clinic_string))
iterator = PushBackIterator(arguments.unpack())
for i, (name, optional, allow_kwargs, stars) in enumerate(clinic_args):
if stars == 1:
lazy_values = []
for key, argument in iterator:
if key is not None:
iterator.push_back((key, argument))
break
lazy_values.append(argument)
yield ValueSet([iterable.FakeTuple(inference_state, lazy_values)])
lazy_values
continue
elif stars == 2:
raise NotImplementedError()
key, argument = next(iterator, (None, None))
if key is not None:
debug.warning('Keyword arguments in argument clinic are currently not supported.')
raise ParamIssue
if argument is None and not optional:
debug.warning('TypeError: %s expected at least %s arguments, got %s',
name, len(clinic_args), i)
raise ParamIssue
value_set = NO_VALUES if argument is None else argument.infer()
if not value_set and not optional:
# For the stdlib we always want values. If we don't get them,
# that's ok, maybe something is too hard to resolve, however,
# we will not proceed with the type inference of that function.
debug.warning('argument_clinic "%s" not resolvable.', name)
raise ParamIssue
yield value_set
def _parse_argument_clinic(string):
allow_kwargs = False
optional = False
while string:
# Optional arguments have to begin with a bracket. And should always be
# at the end of the arguments. This is therefore not a proper argument
# clinic implementation. `range()` for exmple allows an optional start
# value at the beginning.
match = re.match(r'(?:(?:(\[),? ?|, ?|)(\**\w+)|, ?/)\]*', string)
string = string[len(match.group(0)):]
if not match.group(2): # A slash -> allow named arguments
allow_kwargs = True
continue
optional = optional or bool(match.group(1))
word = match.group(2)
stars = word.count('*')
word = word[stars:]
yield (word, optional, allow_kwargs, stars)
if stars:
allow_kwargs = True
class _AbstractArgumentsMixin:
def unpack(self, funcdef=None):
raise NotImplementedError
def get_calling_nodes(self):
return []
class AbstractArguments(_AbstractArgumentsMixin):
context = None
argument_node = None
trailer = None
def unpack_arglist(arglist):
if arglist is None:
return
if arglist.type != 'arglist' and not (
arglist.type == 'argument' and arglist.children[0] in ('*', '**')):
yield 0, arglist
return
iterator = iter(arglist.children)
for child in iterator:
if child == ',':
continue
elif child in ('*', '**'):
c = next(iterator, None)
assert c is not None
yield len(child.value), c
elif child.type == 'argument' and \
child.children[0] in ('*', '**'):
assert len(child.children) == 2
yield len(child.children[0].value), child.children[1]
else:
yield 0, child
class TreeArguments(AbstractArguments):
def __init__(self, inference_state, context, argument_node, trailer=None):
"""
:param argument_node: May be an argument_node or a list of nodes.
"""
self.argument_node = argument_node
self.context = context
self._inference_state = inference_state
self.trailer = trailer # Can be None, e.g. in a class definition.
@classmethod
@inference_state_as_method_param_cache()
def create_cached(cls, *args, **kwargs):
return cls(*args, **kwargs)
def unpack(self, funcdef=None):
named_args = []
for star_count, el in unpack_arglist(self.argument_node):
if star_count == 1:
arrays = self.context.infer_node(el)
iterators = [_iterate_star_args(self.context, a, el, funcdef)
for a in arrays]
for values in list(zip_longest(*iterators)):
yield None, get_merged_lazy_value(
[v for v in values if v is not None]
)
elif star_count == 2:
arrays = self.context.infer_node(el)
for dct in arrays:
yield from _star_star_dict(self.context, dct, el, funcdef)
else:
if el.type == 'argument':
c = el.children
if len(c) == 3: # Keyword argument.
named_args.append((c[0].value, LazyTreeValue(self.context, c[2]),))
else: # Generator comprehension.
# Include the brackets with the parent.
sync_comp_for = el.children[1]
if sync_comp_for.type == 'comp_for':
sync_comp_for = sync_comp_for.children[1]
comp = iterable.GeneratorComprehension(
self._inference_state,
defining_context=self.context,
sync_comp_for_node=sync_comp_for,
entry_node=el.children[0],
)
yield None, LazyKnownValue(comp)
else:
yield None, LazyTreeValue(self.context, el)
# Reordering arguments is necessary, because star args sometimes appear
# after named argument, but in the actual order it's prepended.
yield from named_args
def _as_tree_tuple_objects(self):
for star_count, argument in unpack_arglist(self.argument_node):
default = None
if argument.type == 'argument':
if len(argument.children) == 3: # Keyword argument.
argument, default = argument.children[::2]
yield argument, default, star_count
def iter_calling_names_with_star(self):
for name, default, star_count in self._as_tree_tuple_objects():
# TODO this function is a bit strange. probably refactor?
if not star_count or not isinstance(name, tree.Name):
continue
yield TreeNameDefinition(self.context, name)
def __repr__(self):
return '<%s: %s>' % (self.__class__.__name__, self.argument_node)
def get_calling_nodes(self):
old_arguments_list = []
arguments = self
while arguments not in old_arguments_list:
if not isinstance(arguments, TreeArguments):
break
old_arguments_list.append(arguments)
for calling_name in reversed(list(arguments.iter_calling_names_with_star())):
names = calling_name.goto()
if len(names) != 1:
break
if isinstance(names[0], AnonymousParamName):
# Dynamic parameters should not have calling nodes, because
# they are dynamic and extremely random.
return []
if not isinstance(names[0], ParamName):
break
executed_param_name = names[0].get_executed_param_name()
arguments = executed_param_name.arguments
break
if arguments.argument_node is not None:
return [ContextualizedNode(arguments.context, arguments.argument_node)]
if arguments.trailer is not None:
return [ContextualizedNode(arguments.context, arguments.trailer)]
return []
class ValuesArguments(AbstractArguments):
def __init__(self, values_list):
self._values_list = values_list
def unpack(self, funcdef=None):
for values in self._values_list:
yield None, LazyKnownValues(values)
def __repr__(self):
return '<%s: %s>' % (self.__class__.__name__, self._values_list)
class TreeArgumentsWrapper(_AbstractArgumentsMixin):
def __init__(self, arguments):
self._wrapped_arguments = arguments
@property
def context(self):
return self._wrapped_arguments.context
@property
def argument_node(self):
return self._wrapped_arguments.argument_node
@property
def trailer(self):
return self._wrapped_arguments.trailer
def unpack(self, func=None):
raise NotImplementedError
def get_calling_nodes(self):
return self._wrapped_arguments.get_calling_nodes()
def __repr__(self):
return '<%s: %s>' % (self.__class__.__name__, self._wrapped_arguments)
def _iterate_star_args(context, array, input_node, funcdef=None):
if not array.py__getattribute__('__iter__'):
if funcdef is not None:
# TODO this funcdef should not be needed.
m = "TypeError: %s() argument after * must be a sequence, not %s" \
% (funcdef.name.value, array)
analysis.add(context, 'type-error-star', input_node, message=m)
try:
iter_ = array.py__iter__
except AttributeError:
pass
else:
yield from iter_()
def _star_star_dict(context, array, input_node, funcdef):
from jedi.inference.value.instance import CompiledInstance
if isinstance(array, CompiledInstance) and array.name.string_name == 'dict':
# For now ignore this case. In the future add proper iterators and just
# make one call without crazy isinstance checks.
return {}
elif isinstance(array, iterable.Sequence) and array.array_type == 'dict':
return array.exact_key_items()
else:
if funcdef is not None:
m = "TypeError: %s argument after ** must be a mapping, not %s" \
% (funcdef.name.value, array)
analysis.add(context, 'type-error-star-star', input_node, message=m)
return {}
|