File size: 9,824 Bytes
d1ceb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
"""
Docstrings are another source of information for functions and classes.
:mod:`jedi.inference.dynamic_params` tries to find all executions of functions,
while the docstring parsing is much easier. There are three different types of
docstrings that |jedi| understands:

- `Sphinx <http://sphinx-doc.org/markup/desc.html#info-field-lists>`_
- `Epydoc <http://epydoc.sourceforge.net/manual-fields.html>`_
- `Numpydoc <https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt>`_

For example, the sphinx annotation ``:type foo: str`` clearly states that the
type of ``foo`` is ``str``.

As an addition to parameter searching, this module also provides return
annotations.
"""

import re
import warnings

from parso import parse, ParserSyntaxError

from jedi import debug
from jedi.inference.cache import inference_state_method_cache
from jedi.inference.base_value import iterator_to_value_set, ValueSet, \
    NO_VALUES
from jedi.inference.lazy_value import LazyKnownValues


DOCSTRING_PARAM_PATTERNS = [
    r'\s*:type\s+%s:\s*([^\n]+)',  # Sphinx
    r'\s*:param\s+(\w+)\s+%s:[^\n]*',  # Sphinx param with type
    r'\s*@type\s+%s:\s*([^\n]+)',  # Epydoc
]

DOCSTRING_RETURN_PATTERNS = [
    re.compile(r'\s*:rtype:\s*([^\n]+)', re.M),  # Sphinx
    re.compile(r'\s*@rtype:\s*([^\n]+)', re.M),  # Epydoc
]

REST_ROLE_PATTERN = re.compile(r':[^`]+:`([^`]+)`')


_numpy_doc_string_cache = None


def _get_numpy_doc_string_cls():
    global _numpy_doc_string_cache
    if isinstance(_numpy_doc_string_cache, (ImportError, SyntaxError)):
        raise _numpy_doc_string_cache
    from numpydoc.docscrape import NumpyDocString  # type: ignore[import]
    _numpy_doc_string_cache = NumpyDocString
    return _numpy_doc_string_cache


def _search_param_in_numpydocstr(docstr, param_str):
    """Search `docstr` (in numpydoc format) for type(-s) of `param_str`."""
    with warnings.catch_warnings():
        warnings.simplefilter("ignore")
        try:
            # This is a non-public API. If it ever changes we should be
            # prepared and return gracefully.
            params = _get_numpy_doc_string_cls()(docstr)._parsed_data['Parameters']
        except Exception:
            return []
    for p_name, p_type, p_descr in params:
        if p_name == param_str:
            m = re.match(r'([^,]+(,[^,]+)*?)(,[ ]*optional)?$', p_type)
            if m:
                p_type = m.group(1)
            return list(_expand_typestr(p_type))
    return []


def _search_return_in_numpydocstr(docstr):
    """
    Search `docstr` (in numpydoc format) for type(-s) of function returns.
    """
    with warnings.catch_warnings():
        warnings.simplefilter("ignore")
        try:
            doc = _get_numpy_doc_string_cls()(docstr)
        except Exception:
            return
    try:
        # This is a non-public API. If it ever changes we should be
        # prepared and return gracefully.
        returns = doc._parsed_data['Returns']
        returns += doc._parsed_data['Yields']
    except Exception:
        return
    for r_name, r_type, r_descr in returns:
        # Return names are optional and if so the type is in the name
        if not r_type:
            r_type = r_name
        yield from _expand_typestr(r_type)


def _expand_typestr(type_str):
    """
    Attempts to interpret the possible types in `type_str`
    """
    # Check if alternative types are specified with 'or'
    if re.search(r'\bor\b', type_str):
        for t in type_str.split('or'):
            yield t.split('of')[0].strip()
    # Check if like "list of `type`" and set type to list
    elif re.search(r'\bof\b', type_str):
        yield type_str.split('of')[0]
    # Check if type has is a set of valid literal values eg: {'C', 'F', 'A'}
    elif type_str.startswith('{'):
        node = parse(type_str, version='3.7').children[0]
        if node.type == 'atom':
            for leaf in getattr(node.children[1], "children", []):
                if leaf.type == 'number':
                    if '.' in leaf.value:
                        yield 'float'
                    else:
                        yield 'int'
                elif leaf.type == 'string':
                    if 'b' in leaf.string_prefix.lower():
                        yield 'bytes'
                    else:
                        yield 'str'
                # Ignore everything else.

    # Otherwise just work with what we have.
    else:
        yield type_str


def _search_param_in_docstr(docstr, param_str):
    """
    Search `docstr` for type(-s) of `param_str`.

    >>> _search_param_in_docstr(':type param: int', 'param')
    ['int']
    >>> _search_param_in_docstr('@type param: int', 'param')
    ['int']
    >>> _search_param_in_docstr(
    ...   ':type param: :class:`threading.Thread`', 'param')
    ['threading.Thread']
    >>> bool(_search_param_in_docstr('no document', 'param'))
    False
    >>> _search_param_in_docstr(':param int param: some description', 'param')
    ['int']

    """
    # look at #40 to see definitions of those params
    patterns = [re.compile(p % re.escape(param_str))
                for p in DOCSTRING_PARAM_PATTERNS]
    for pattern in patterns:
        match = pattern.search(docstr)
        if match:
            return [_strip_rst_role(match.group(1))]

    return _search_param_in_numpydocstr(docstr, param_str)


def _strip_rst_role(type_str):
    """
    Strip off the part looks like a ReST role in `type_str`.

    >>> _strip_rst_role(':class:`ClassName`')  # strip off :class:
    'ClassName'
    >>> _strip_rst_role(':py:obj:`module.Object`')  # works with domain
    'module.Object'
    >>> _strip_rst_role('ClassName')  # do nothing when not ReST role
    'ClassName'

    See also:
    http://sphinx-doc.org/domains.html#cross-referencing-python-objects

    """
    match = REST_ROLE_PATTERN.match(type_str)
    if match:
        return match.group(1)
    else:
        return type_str


def _infer_for_statement_string(module_context, string):
    if string is None:
        return []

    potential_imports = re.findall(r'((?:\w+\.)*\w+)\.', string)
    # Try to import module part in dotted name.
    # (e.g., 'threading' in 'threading.Thread').
    imports = "\n".join(f"import {p}" for p in potential_imports)
    string = f'{imports}\n{string}'

    debug.dbg('Parse docstring code %s', string, color='BLUE')
    grammar = module_context.inference_state.grammar
    try:
        module = grammar.parse(string, error_recovery=False)
    except ParserSyntaxError:
        return []
    try:
        # It's not the last item, because that's an end marker.
        stmt = module.children[-2]
    except (AttributeError, IndexError):
        return []

    if stmt.type not in ('name', 'atom', 'atom_expr'):
        return []

    # Here we basically use a fake module that also uses the filters in
    # the actual module.
    from jedi.inference.docstring_utils import DocstringModule
    m = DocstringModule(
        in_module_context=module_context,
        inference_state=module_context.inference_state,
        module_node=module,
        code_lines=[],
    )
    return list(_execute_types_in_stmt(m.as_context(), stmt))


def _execute_types_in_stmt(module_context, stmt):
    """
    Executing all types or general elements that we find in a statement. This
    doesn't include tuple, list and dict literals, because the stuff they
    contain is executed. (Used as type information).
    """
    definitions = module_context.infer_node(stmt)
    return ValueSet.from_sets(
        _execute_array_values(module_context.inference_state, d)
        for d in definitions
    )


def _execute_array_values(inference_state, array):
    """
    Tuples indicate that there's not just one return value, but the listed
    ones.  `(str, int)` means that it returns a tuple with both types.
    """
    from jedi.inference.value.iterable import SequenceLiteralValue, FakeTuple, FakeList
    if isinstance(array, SequenceLiteralValue) and array.array_type in ('tuple', 'list'):
        values = []
        for lazy_value in array.py__iter__():
            objects = ValueSet.from_sets(
                _execute_array_values(inference_state, typ)
                for typ in lazy_value.infer()
            )
            values.append(LazyKnownValues(objects))
        cls = FakeTuple if array.array_type == 'tuple' else FakeList
        return {cls(inference_state, values)}
    else:
        return array.execute_annotation()


@inference_state_method_cache()
def infer_param(function_value, param):
    def infer_docstring(docstring):
        return ValueSet(
            p
            for param_str in _search_param_in_docstr(docstring, param.name.value)
            for p in _infer_for_statement_string(module_context, param_str)
        )
    module_context = function_value.get_root_context()
    func = param.get_parent_function()
    if func.type == 'lambdef':
        return NO_VALUES

    types = infer_docstring(function_value.py__doc__())
    if function_value.is_bound_method() \
            and function_value.py__name__() == '__init__':
        types |= infer_docstring(function_value.class_context.py__doc__())

    debug.dbg('Found param types for docstring: %s', types, color='BLUE')
    return types


@inference_state_method_cache()
@iterator_to_value_set
def infer_return_types(function_value):
    def search_return_in_docstr(code):
        for p in DOCSTRING_RETURN_PATTERNS:
            match = p.search(code)
            if match:
                yield _strip_rst_role(match.group(1))
        # Check for numpy style return hint
        yield from _search_return_in_numpydocstr(code)

    for type_str in search_return_in_docstr(function_value.py__doc__()):
        yield from _infer_for_statement_string(function_value.get_root_context(), type_str)