File size: 10,450 Bytes
d1ceb73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
from collections import defaultdict
from inspect import Parameter
from jedi import debug
from jedi.inference.utils import PushBackIterator
from jedi.inference import analysis
from jedi.inference.lazy_value import LazyKnownValue, \
LazyTreeValue, LazyUnknownValue
from jedi.inference.value import iterable
from jedi.inference.names import ParamName
def _add_argument_issue(error_name, lazy_value, message):
if isinstance(lazy_value, LazyTreeValue):
node = lazy_value.data
if node.parent.type == 'argument':
node = node.parent
return analysis.add(lazy_value.context, error_name, node, message)
class ExecutedParamName(ParamName):
def __init__(self, function_value, arguments, param_node, lazy_value, is_default=False):
super().__init__(function_value, param_node.name, arguments=arguments)
self._lazy_value = lazy_value
self._is_default = is_default
def infer(self):
return self._lazy_value.infer()
def matches_signature(self):
if self._is_default:
return True
argument_values = self.infer().py__class__()
if self.get_kind() in (Parameter.VAR_POSITIONAL, Parameter.VAR_KEYWORD):
return True
annotations = self.infer_annotation(execute_annotation=False)
if not annotations:
# If we cannot infer annotations - or there aren't any - pretend
# that the signature matches.
return True
matches = any(c1.is_sub_class_of(c2)
for c1 in argument_values
for c2 in annotations.gather_annotation_classes())
debug.dbg("param compare %s: %s <=> %s",
matches, argument_values, annotations, color='BLUE')
return matches
def __repr__(self):
return '<%s: %s>' % (self.__class__.__name__, self.string_name)
def get_executed_param_names_and_issues(function_value, arguments):
"""
Return a tuple of:
- a list of `ExecutedParamName`s corresponding to the arguments of the
function execution `function_value`, containing the inferred value of
those arguments (whether explicit or default)
- a list of the issues encountered while building that list
For example, given:
```
def foo(a, b, c=None, d='d'): ...
foo(42, c='c')
```
Then for the execution of `foo`, this will return a tuple containing:
- a list with entries for each parameter a, b, c & d; the entries for a,
c, & d will have their values (42, 'c' and 'd' respectively) included.
- a list with a single entry about the lack of a value for `b`
"""
def too_many_args(argument):
m = _error_argument_count(funcdef, len(unpacked_va))
# Just report an error for the first param that is not needed (like
# cPython).
if arguments.get_calling_nodes():
# There might not be a valid calling node so check for that first.
issues.append(
_add_argument_issue(
'type-error-too-many-arguments',
argument,
message=m
)
)
else:
issues.append(None)
debug.warning('non-public warning: %s', m)
issues = [] # List[Optional[analysis issue]]
result_params = []
param_dict = {}
funcdef = function_value.tree_node
# Default params are part of the value where the function was defined.
# This means that they might have access on class variables that the
# function itself doesn't have.
default_param_context = function_value.get_default_param_context()
for param in funcdef.get_params():
param_dict[param.name.value] = param
unpacked_va = list(arguments.unpack(funcdef))
var_arg_iterator = PushBackIterator(iter(unpacked_va))
non_matching_keys = defaultdict(lambda: [])
keys_used = {}
keys_only = False
had_multiple_value_error = False
for param in funcdef.get_params():
# The value and key can both be null. There, the defaults apply.
# args / kwargs will just be empty arrays / dicts, respectively.
# Wrong value count is just ignored. If you try to test cases that are
# not allowed in Python, Jedi will maybe not show any completions.
is_default = False
key, argument = next(var_arg_iterator, (None, None))
while key is not None:
keys_only = True
try:
key_param = param_dict[key]
except KeyError:
non_matching_keys[key] = argument
else:
if key in keys_used:
had_multiple_value_error = True
m = ("TypeError: %s() got multiple values for keyword argument '%s'."
% (funcdef.name, key))
for contextualized_node in arguments.get_calling_nodes():
issues.append(
analysis.add(contextualized_node.context,
'type-error-multiple-values',
contextualized_node.node, message=m)
)
else:
keys_used[key] = ExecutedParamName(
function_value, arguments, key_param, argument)
key, argument = next(var_arg_iterator, (None, None))
try:
result_params.append(keys_used[param.name.value])
continue
except KeyError:
pass
if param.star_count == 1:
# *args param
lazy_value_list = []
if argument is not None:
lazy_value_list.append(argument)
for key, argument in var_arg_iterator:
# Iterate until a key argument is found.
if key:
var_arg_iterator.push_back((key, argument))
break
lazy_value_list.append(argument)
seq = iterable.FakeTuple(function_value.inference_state, lazy_value_list)
result_arg = LazyKnownValue(seq)
elif param.star_count == 2:
if argument is not None:
too_many_args(argument)
# **kwargs param
dct = iterable.FakeDict(function_value.inference_state, dict(non_matching_keys))
result_arg = LazyKnownValue(dct)
non_matching_keys = {}
else:
# normal param
if argument is None:
# No value: Return an empty container
if param.default is None:
result_arg = LazyUnknownValue()
if not keys_only:
for contextualized_node in arguments.get_calling_nodes():
m = _error_argument_count(funcdef, len(unpacked_va))
issues.append(
analysis.add(
contextualized_node.context,
'type-error-too-few-arguments',
contextualized_node.node,
message=m,
)
)
else:
result_arg = LazyTreeValue(default_param_context, param.default)
is_default = True
else:
result_arg = argument
result_params.append(ExecutedParamName(
function_value, arguments, param, result_arg, is_default=is_default
))
if not isinstance(result_arg, LazyUnknownValue):
keys_used[param.name.value] = result_params[-1]
if keys_only:
# All arguments should be handed over to the next function. It's not
# about the values inside, it's about the names. Jedi needs to now that
# there's nothing to find for certain names.
for k in set(param_dict) - set(keys_used):
param = param_dict[k]
if not (non_matching_keys or had_multiple_value_error
or param.star_count or param.default):
# add a warning only if there's not another one.
for contextualized_node in arguments.get_calling_nodes():
m = _error_argument_count(funcdef, len(unpacked_va))
issues.append(
analysis.add(contextualized_node.context,
'type-error-too-few-arguments',
contextualized_node.node, message=m)
)
for key, lazy_value in non_matching_keys.items():
m = "TypeError: %s() got an unexpected keyword argument '%s'." \
% (funcdef.name, key)
issues.append(
_add_argument_issue(
'type-error-keyword-argument',
lazy_value,
message=m
)
)
remaining_arguments = list(var_arg_iterator)
if remaining_arguments:
first_key, lazy_value = remaining_arguments[0]
too_many_args(lazy_value)
return result_params, issues
def get_executed_param_names(function_value, arguments):
"""
Return a list of `ExecutedParamName`s corresponding to the arguments of the
function execution `function_value`, containing the inferred value of those
arguments (whether explicit or default). Any issues building this list (for
example required arguments which are missing in the invocation) are ignored.
For example, given:
```
def foo(a, b, c=None, d='d'): ...
foo(42, c='c')
```
Then for the execution of `foo`, this will return a list containing entries
for each parameter a, b, c & d; the entries for a, c, & d will have their
values (42, 'c' and 'd' respectively) included.
"""
return get_executed_param_names_and_issues(function_value, arguments)[0]
def _error_argument_count(funcdef, actual_count):
params = funcdef.get_params()
default_arguments = sum(1 for p in params if p.default or p.star_count)
if default_arguments == 0:
before = 'exactly '
else:
before = 'from %s to ' % (len(params) - default_arguments)
return ('TypeError: %s() takes %s%s arguments (%s given).'
% (funcdef.name, before, len(params), actual_count))
|