File size: 17,424 Bytes
d1ceb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
from parso.python import tree

from jedi import debug
from jedi.inference.cache import inference_state_method_cache, CachedMetaClass
from jedi.inference import compiled
from jedi.inference import recursion
from jedi.inference import docstrings
from jedi.inference import flow_analysis
from jedi.inference.signature import TreeSignature
from jedi.inference.filters import ParserTreeFilter, FunctionExecutionFilter, \
    AnonymousFunctionExecutionFilter
from jedi.inference.names import ValueName, AbstractNameDefinition, \
    AnonymousParamName, ParamName, NameWrapper
from jedi.inference.base_value import ContextualizedNode, NO_VALUES, \
    ValueSet, TreeValue, ValueWrapper
from jedi.inference.lazy_value import LazyKnownValues, LazyKnownValue, \
    LazyTreeValue
from jedi.inference.context import ValueContext, TreeContextMixin
from jedi.inference.value import iterable
from jedi import parser_utils
from jedi.inference.parser_cache import get_yield_exprs
from jedi.inference.helpers import values_from_qualified_names
from jedi.inference.gradual.generics import TupleGenericManager


class LambdaName(AbstractNameDefinition):
    string_name = '<lambda>'
    api_type = 'function'

    def __init__(self, lambda_value):
        self._lambda_value = lambda_value
        self.parent_context = lambda_value.parent_context

    @property
    def start_pos(self):
        return self._lambda_value.tree_node.start_pos

    def infer(self):
        return ValueSet([self._lambda_value])


class FunctionAndClassBase(TreeValue):
    def get_qualified_names(self):
        if self.parent_context.is_class():
            n = self.parent_context.get_qualified_names()
            if n is None:
                # This means that the parent class lives within a function.
                return None
            return n + (self.py__name__(),)
        elif self.parent_context.is_module():
            return (self.py__name__(),)
        else:
            return None


class FunctionMixin:
    api_type = 'function'

    def get_filters(self, origin_scope=None):
        cls = self.py__class__()
        for instance in cls.execute_with_values():
            yield from instance.get_filters(origin_scope=origin_scope)

    def py__get__(self, instance, class_value):
        from jedi.inference.value.instance import BoundMethod
        if instance is None:
            # Calling the Foo.bar results in the original bar function.
            return ValueSet([self])
        return ValueSet([BoundMethod(instance, class_value.as_context(), self)])

    def get_param_names(self):
        return [AnonymousParamName(self, param.name)
                for param in self.tree_node.get_params()]

    @property
    def name(self):
        if self.tree_node.type == 'lambdef':
            return LambdaName(self)
        return ValueName(self, self.tree_node.name)

    def is_function(self):
        return True

    def py__name__(self):
        return self.name.string_name

    def get_type_hint(self, add_class_info=True):
        return_annotation = self.tree_node.annotation
        if return_annotation is None:
            def param_name_to_str(n):
                s = n.string_name
                annotation = n.infer().get_type_hint()
                if annotation is not None:
                    s += ': ' + annotation
                if n.default_node is not None:
                    s += '=' + n.default_node.get_code(include_prefix=False)
                return s

            function_execution = self.as_context()
            result = function_execution.infer()
            return_hint = result.get_type_hint()
            body = self.py__name__() + '(%s)' % ', '.join([
                param_name_to_str(n)
                for n in function_execution.get_param_names()
            ])
            if return_hint is None:
                return body
        else:
            return_hint = return_annotation.get_code(include_prefix=False)
            body = self.py__name__() + self.tree_node.children[2].get_code(include_prefix=False)

        return body + ' -> ' + return_hint

    def py__call__(self, arguments):
        function_execution = self.as_context(arguments)
        return function_execution.infer()

    def _as_context(self, arguments=None):
        if arguments is None:
            return AnonymousFunctionExecution(self)
        return FunctionExecutionContext(self, arguments)

    def get_signatures(self):
        return [TreeSignature(f) for f in self.get_signature_functions()]


class FunctionValue(FunctionMixin, FunctionAndClassBase, metaclass=CachedMetaClass):
    @classmethod
    def from_context(cls, context, tree_node):
        def create(tree_node):
            if context.is_class():
                return MethodValue(
                    context.inference_state,
                    context,
                    parent_context=parent_context,
                    tree_node=tree_node
                )
            else:
                return cls(
                    context.inference_state,
                    parent_context=parent_context,
                    tree_node=tree_node
                )

        overloaded_funcs = list(_find_overload_functions(context, tree_node))

        parent_context = context
        while parent_context.is_class() or parent_context.is_instance():
            parent_context = parent_context.parent_context

        function = create(tree_node)

        if overloaded_funcs:
            return OverloadedFunctionValue(
                function,
                # Get them into the correct order: lower line first.
                list(reversed([create(f) for f in overloaded_funcs]))
            )
        return function

    def py__class__(self):
        c, = values_from_qualified_names(self.inference_state, 'types', 'FunctionType')
        return c

    def get_default_param_context(self):
        return self.parent_context

    def get_signature_functions(self):
        return [self]


class FunctionNameInClass(NameWrapper):
    def __init__(self, class_context, name):
        super().__init__(name)
        self._class_context = class_context

    def get_defining_qualified_value(self):
        return self._class_context.get_value()  # Might be None.


class MethodValue(FunctionValue):
    def __init__(self, inference_state, class_context, *args, **kwargs):
        super().__init__(inference_state, *args, **kwargs)
        self.class_context = class_context

    def get_default_param_context(self):
        return self.class_context

    def get_qualified_names(self):
        # Need to implement this, because the parent value of a method
        # value is not the class value but the module.
        names = self.class_context.get_qualified_names()
        if names is None:
            return None
        return names + (self.py__name__(),)

    @property
    def name(self):
        return FunctionNameInClass(self.class_context, super().name)


class BaseFunctionExecutionContext(ValueContext, TreeContextMixin):
    def infer_annotations(self):
        raise NotImplementedError

    @inference_state_method_cache(default=NO_VALUES)
    @recursion.execution_recursion_decorator()
    def get_return_values(self, check_yields=False):
        funcdef = self.tree_node
        if funcdef.type == 'lambdef':
            return self.infer_node(funcdef.children[-1])

        if check_yields:
            value_set = NO_VALUES
            returns = get_yield_exprs(self.inference_state, funcdef)
        else:
            value_set = self.infer_annotations()
            if value_set:
                # If there are annotations, prefer them over anything else.
                # This will make it faster.
                return value_set
            value_set |= docstrings.infer_return_types(self._value)
            returns = funcdef.iter_return_stmts()

        for r in returns:
            if check_yields:
                value_set |= ValueSet.from_sets(
                    lazy_value.infer()
                    for lazy_value in self._get_yield_lazy_value(r)
                )
            else:
                check = flow_analysis.reachability_check(self, funcdef, r)
                if check is flow_analysis.UNREACHABLE:
                    debug.dbg('Return unreachable: %s', r)
                else:
                    try:
                        children = r.children
                    except AttributeError:
                        ctx = compiled.builtin_from_name(self.inference_state, 'None')
                        value_set |= ValueSet([ctx])
                    else:
                        value_set |= self.infer_node(children[1])
                if check is flow_analysis.REACHABLE:
                    debug.dbg('Return reachable: %s', r)
                    break
        return value_set

    def _get_yield_lazy_value(self, yield_expr):
        if yield_expr.type == 'keyword':
            # `yield` just yields None.
            ctx = compiled.builtin_from_name(self.inference_state, 'None')
            yield LazyKnownValue(ctx)
            return

        node = yield_expr.children[1]
        if node.type == 'yield_arg':  # It must be a yield from.
            cn = ContextualizedNode(self, node.children[1])
            yield from cn.infer().iterate(cn)
        else:
            yield LazyTreeValue(self, node)

    @recursion.execution_recursion_decorator(default=iter([]))
    def get_yield_lazy_values(self, is_async=False):
        # TODO: if is_async, wrap yield statements in Awaitable/async_generator_asend
        for_parents = [(y, tree.search_ancestor(y, 'for_stmt', 'funcdef',
                                                'while_stmt', 'if_stmt'))
                       for y in get_yield_exprs(self.inference_state, self.tree_node)]

        # Calculate if the yields are placed within the same for loop.
        yields_order = []
        last_for_stmt = None
        for yield_, for_stmt in for_parents:
            # For really simple for loops we can predict the order. Otherwise
            # we just ignore it.
            parent = for_stmt.parent
            if parent.type == 'suite':
                parent = parent.parent
            if for_stmt.type == 'for_stmt' and parent == self.tree_node \
                    and parser_utils.for_stmt_defines_one_name(for_stmt):  # Simplicity for now.
                if for_stmt == last_for_stmt:
                    yields_order[-1][1].append(yield_)
                else:
                    yields_order.append((for_stmt, [yield_]))
            elif for_stmt == self.tree_node:
                yields_order.append((None, [yield_]))
            else:
                types = self.get_return_values(check_yields=True)
                if types:
                    yield LazyKnownValues(types, min=0, max=float('inf'))
                return
            last_for_stmt = for_stmt

        for for_stmt, yields in yields_order:
            if for_stmt is None:
                # No for_stmt, just normal yields.
                for yield_ in yields:
                    yield from self._get_yield_lazy_value(yield_)
            else:
                input_node = for_stmt.get_testlist()
                cn = ContextualizedNode(self, input_node)
                ordered = cn.infer().iterate(cn)
                ordered = list(ordered)
                for lazy_value in ordered:
                    dct = {str(for_stmt.children[1].value): lazy_value.infer()}
                    with self.predefine_names(for_stmt, dct):
                        for yield_in_same_for_stmt in yields:
                            yield from self._get_yield_lazy_value(yield_in_same_for_stmt)

    def merge_yield_values(self, is_async=False):
        return ValueSet.from_sets(
            lazy_value.infer()
            for lazy_value in self.get_yield_lazy_values()
        )

    def is_generator(self):
        return bool(get_yield_exprs(self.inference_state, self.tree_node))

    def infer(self):
        """
        Created to be used by inheritance.
        """
        inference_state = self.inference_state
        is_coroutine = self.tree_node.parent.type in ('async_stmt', 'async_funcdef')
        from jedi.inference.gradual.base import GenericClass

        if is_coroutine:
            if self.is_generator():
                async_generator_classes = inference_state.typing_module \
                    .py__getattribute__('AsyncGenerator')

                yield_values = self.merge_yield_values(is_async=True)
                # The contravariant doesn't seem to be defined.
                generics = (yield_values.py__class__(), NO_VALUES)
                return ValueSet(
                    GenericClass(c, TupleGenericManager(generics))
                    for c in async_generator_classes
                ).execute_annotation()
            else:
                async_classes = inference_state.typing_module.py__getattribute__('Coroutine')
                return_values = self.get_return_values()
                # Only the first generic is relevant.
                generics = (return_values.py__class__(), NO_VALUES, NO_VALUES)
                return ValueSet(
                    GenericClass(c, TupleGenericManager(generics)) for c in async_classes
                ).execute_annotation()
        else:
            # If there are annotations, prefer them over anything else.
            if self.is_generator() and not self.infer_annotations():
                return ValueSet([iterable.Generator(inference_state, self)])
            else:
                return self.get_return_values()


class FunctionExecutionContext(BaseFunctionExecutionContext):
    def __init__(self, function_value, arguments):
        super().__init__(function_value)
        self._arguments = arguments

    def get_filters(self, until_position=None, origin_scope=None):
        yield FunctionExecutionFilter(
            self, self._value,
            until_position=until_position,
            origin_scope=origin_scope,
            arguments=self._arguments
        )

    def infer_annotations(self):
        from jedi.inference.gradual.annotation import infer_return_types
        return infer_return_types(self._value, self._arguments)

    def get_param_names(self):
        return [
            ParamName(self._value, param.name, self._arguments)
            for param in self._value.tree_node.get_params()
        ]


class AnonymousFunctionExecution(BaseFunctionExecutionContext):
    def infer_annotations(self):
        # I don't think inferring anonymous executions is a big thing.
        # Anonymous contexts are mostly there for the user to work in. ~ dave
        return NO_VALUES

    def get_filters(self, until_position=None, origin_scope=None):
        yield AnonymousFunctionExecutionFilter(
            self, self._value,
            until_position=until_position,
            origin_scope=origin_scope,
        )

    def get_param_names(self):
        return self._value.get_param_names()


class OverloadedFunctionValue(FunctionMixin, ValueWrapper):
    def __init__(self, function, overloaded_functions):
        super().__init__(function)
        self._overloaded_functions = overloaded_functions

    def py__call__(self, arguments):
        debug.dbg("Execute overloaded function %s", self._wrapped_value, color='BLUE')
        function_executions = []
        for signature in self.get_signatures():
            function_execution = signature.value.as_context(arguments)
            function_executions.append(function_execution)
            if signature.matches_signature(arguments):
                return function_execution.infer()

        if self.inference_state.is_analysis:
            # In this case we want precision.
            return NO_VALUES
        return ValueSet.from_sets(fe.infer() for fe in function_executions)

    def get_signature_functions(self):
        return self._overloaded_functions

    def get_type_hint(self, add_class_info=True):
        return 'Union[%s]' % ', '.join(f.get_type_hint() for f in self._overloaded_functions)


def _find_overload_functions(context, tree_node):
    def _is_overload_decorated(funcdef):
        if funcdef.parent.type == 'decorated':
            decorators = funcdef.parent.children[0]
            if decorators.type == 'decorator':
                decorators = [decorators]
            else:
                decorators = decorators.children
            for decorator in decorators:
                dotted_name = decorator.children[1]
                if dotted_name.type == 'name' and dotted_name.value == 'overload':
                    # TODO check with values if it's the right overload
                    return True
        return False

    if tree_node.type == 'lambdef':
        return

    if _is_overload_decorated(tree_node):
        yield tree_node

    while True:
        filter = ParserTreeFilter(
            context,
            until_position=tree_node.start_pos
        )
        names = filter.get(tree_node.name.value)
        assert isinstance(names, list)
        if not names:
            break

        found = False
        for name in names:
            funcdef = name.tree_name.parent
            if funcdef.type == 'funcdef' and _is_overload_decorated(funcdef):
                tree_node = funcdef
                found = True
                yield funcdef

        if not found:
            break