File size: 23,305 Bytes
d1ceb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
"""
Contains all classes and functions to deal with lists, dicts, generators and
iterators in general.
"""
from jedi.inference import compiled
from jedi.inference import analysis
from jedi.inference.lazy_value import LazyKnownValue, LazyKnownValues, \
    LazyTreeValue
from jedi.inference.helpers import get_int_or_none, is_string, \
    reraise_getitem_errors, SimpleGetItemNotFound
from jedi.inference.utils import safe_property, to_list
from jedi.inference.cache import inference_state_method_cache
from jedi.inference.filters import LazyAttributeOverwrite, publish_method
from jedi.inference.base_value import ValueSet, Value, NO_VALUES, \
    ContextualizedNode, iterate_values, sentinel, \
    LazyValueWrapper
from jedi.parser_utils import get_sync_comp_fors
from jedi.inference.context import CompForContext
from jedi.inference.value.dynamic_arrays import check_array_additions


class IterableMixin:
    def py__next__(self, contextualized_node=None):
        return self.py__iter__(contextualized_node)

    def py__stop_iteration_returns(self):
        return ValueSet([compiled.builtin_from_name(self.inference_state, 'None')])

    # At the moment, safe values are simple values like "foo", 1 and not
    # lists/dicts. Therefore as a small speed optimization we can just do the
    # default instead of resolving the lazy wrapped values, that are just
    # doing this in the end as well.
    # This mostly speeds up patterns like `sys.version_info >= (3, 0)` in
    # typeshed.
    get_safe_value = Value.get_safe_value


class GeneratorBase(LazyAttributeOverwrite, IterableMixin):
    array_type = None

    def _get_wrapped_value(self):
        instance, = self._get_cls().execute_annotation()
        return instance

    def _get_cls(self):
        generator, = self.inference_state.typing_module.py__getattribute__('Generator')
        return generator

    def py__bool__(self):
        return True

    @publish_method('__iter__')
    def _iter(self, arguments):
        return ValueSet([self])

    @publish_method('send')
    @publish_method('__next__')
    def _next(self, arguments):
        return ValueSet.from_sets(lazy_value.infer() for lazy_value in self.py__iter__())

    def py__stop_iteration_returns(self):
        return ValueSet([compiled.builtin_from_name(self.inference_state, 'None')])

    @property
    def name(self):
        return compiled.CompiledValueName(self, 'Generator')

    def get_annotated_class_object(self):
        from jedi.inference.gradual.generics import TupleGenericManager
        gen_values = self.merge_types_of_iterate().py__class__()
        gm = TupleGenericManager((gen_values, NO_VALUES, NO_VALUES))
        return self._get_cls().with_generics(gm)


class Generator(GeneratorBase):
    """Handling of `yield` functions."""
    def __init__(self, inference_state, func_execution_context):
        super().__init__(inference_state)
        self._func_execution_context = func_execution_context

    def py__iter__(self, contextualized_node=None):
        iterators = self._func_execution_context.infer_annotations()
        if iterators:
            return iterators.iterate(contextualized_node)
        return self._func_execution_context.get_yield_lazy_values()

    def py__stop_iteration_returns(self):
        return self._func_execution_context.get_return_values()

    def __repr__(self):
        return "<%s of %s>" % (type(self).__name__, self._func_execution_context)


def comprehension_from_atom(inference_state, value, atom):
    bracket = atom.children[0]
    test_list_comp = atom.children[1]

    if bracket == '{':
        if atom.children[1].children[1] == ':':
            sync_comp_for = test_list_comp.children[3]
            if sync_comp_for.type == 'comp_for':
                sync_comp_for = sync_comp_for.children[1]

            return DictComprehension(
                inference_state,
                value,
                sync_comp_for_node=sync_comp_for,
                key_node=test_list_comp.children[0],
                value_node=test_list_comp.children[2],
            )
        else:
            cls = SetComprehension
    elif bracket == '(':
        cls = GeneratorComprehension
    elif bracket == '[':
        cls = ListComprehension

    sync_comp_for = test_list_comp.children[1]
    if sync_comp_for.type == 'comp_for':
        sync_comp_for = sync_comp_for.children[1]

    return cls(
        inference_state,
        defining_context=value,
        sync_comp_for_node=sync_comp_for,
        entry_node=test_list_comp.children[0],
    )


class ComprehensionMixin:
    @inference_state_method_cache()
    def _get_comp_for_context(self, parent_context, comp_for):
        return CompForContext(parent_context, comp_for)

    def _nested(self, comp_fors, parent_context=None):
        comp_for = comp_fors[0]

        is_async = comp_for.parent.type == 'comp_for'

        input_node = comp_for.children[3]
        parent_context = parent_context or self._defining_context
        input_types = parent_context.infer_node(input_node)

        cn = ContextualizedNode(parent_context, input_node)
        iterated = input_types.iterate(cn, is_async=is_async)
        exprlist = comp_for.children[1]
        for i, lazy_value in enumerate(iterated):
            types = lazy_value.infer()
            dct = unpack_tuple_to_dict(parent_context, types, exprlist)
            context = self._get_comp_for_context(
                parent_context,
                comp_for,
            )
            with context.predefine_names(comp_for, dct):
                try:
                    yield from self._nested(comp_fors[1:], context)
                except IndexError:
                    iterated = context.infer_node(self._entry_node)
                    if self.array_type == 'dict':
                        yield iterated, context.infer_node(self._value_node)
                    else:
                        yield iterated

    @inference_state_method_cache(default=[])
    @to_list
    def _iterate(self):
        comp_fors = tuple(get_sync_comp_fors(self._sync_comp_for_node))
        yield from self._nested(comp_fors)

    def py__iter__(self, contextualized_node=None):
        for set_ in self._iterate():
            yield LazyKnownValues(set_)

    def __repr__(self):
        return "<%s of %s>" % (type(self).__name__, self._sync_comp_for_node)


class _DictMixin:
    def _get_generics(self):
        return tuple(c_set.py__class__() for c_set in self.get_mapping_item_values())


class Sequence(LazyAttributeOverwrite, IterableMixin):
    api_type = 'instance'

    @property
    def name(self):
        return compiled.CompiledValueName(self, self.array_type)

    def _get_generics(self):
        return (self.merge_types_of_iterate().py__class__(),)

    @inference_state_method_cache(default=())
    def _cached_generics(self):
        return self._get_generics()

    def _get_wrapped_value(self):
        from jedi.inference.gradual.base import GenericClass
        from jedi.inference.gradual.generics import TupleGenericManager
        klass = compiled.builtin_from_name(self.inference_state, self.array_type)
        c, = GenericClass(
            klass,
            TupleGenericManager(self._cached_generics())
        ).execute_annotation()
        return c

    def py__bool__(self):
        return None  # We don't know the length, because of appends.

    @safe_property
    def parent(self):
        return self.inference_state.builtins_module

    def py__getitem__(self, index_value_set, contextualized_node):
        if self.array_type == 'dict':
            return self._dict_values()
        return iterate_values(ValueSet([self]))


class _BaseComprehension(ComprehensionMixin):
    def __init__(self, inference_state, defining_context, sync_comp_for_node, entry_node):
        assert sync_comp_for_node.type == 'sync_comp_for'
        super().__init__(inference_state)
        self._defining_context = defining_context
        self._sync_comp_for_node = sync_comp_for_node
        self._entry_node = entry_node


class ListComprehension(_BaseComprehension, Sequence):
    array_type = 'list'

    def py__simple_getitem__(self, index):
        if isinstance(index, slice):
            return ValueSet([self])

        all_types = list(self.py__iter__())
        with reraise_getitem_errors(IndexError, TypeError):
            lazy_value = all_types[index]
        return lazy_value.infer()


class SetComprehension(_BaseComprehension, Sequence):
    array_type = 'set'


class GeneratorComprehension(_BaseComprehension, GeneratorBase):
    pass


class _DictKeyMixin:
    # TODO merge with _DictMixin?
    def get_mapping_item_values(self):
        return self._dict_keys(), self._dict_values()

    def get_key_values(self):
        # TODO merge with _dict_keys?
        return self._dict_keys()


class DictComprehension(ComprehensionMixin, Sequence, _DictKeyMixin):
    array_type = 'dict'

    def __init__(self, inference_state, defining_context, sync_comp_for_node, key_node, value_node):
        assert sync_comp_for_node.type == 'sync_comp_for'
        super().__init__(inference_state)
        self._defining_context = defining_context
        self._sync_comp_for_node = sync_comp_for_node
        self._entry_node = key_node
        self._value_node = value_node

    def py__iter__(self, contextualized_node=None):
        for keys, values in self._iterate():
            yield LazyKnownValues(keys)

    def py__simple_getitem__(self, index):
        for keys, values in self._iterate():
            for k in keys:
                # Be careful in the future if refactoring, index could be a
                # slice object.
                if k.get_safe_value(default=object()) == index:
                    return values
        raise SimpleGetItemNotFound()

    def _dict_keys(self):
        return ValueSet.from_sets(keys for keys, values in self._iterate())

    def _dict_values(self):
        return ValueSet.from_sets(values for keys, values in self._iterate())

    @publish_method('values')
    def _imitate_values(self, arguments):
        lazy_value = LazyKnownValues(self._dict_values())
        return ValueSet([FakeList(self.inference_state, [lazy_value])])

    @publish_method('items')
    def _imitate_items(self, arguments):
        lazy_values = [
            LazyKnownValue(
                FakeTuple(
                    self.inference_state,
                    [LazyKnownValues(key),
                     LazyKnownValues(value)]
                )
            )
            for key, value in self._iterate()
        ]

        return ValueSet([FakeList(self.inference_state, lazy_values)])

    def exact_key_items(self):
        # NOTE: A smarter thing can probably done here to achieve better
        # completions, but at least like this jedi doesn't crash
        return []


class SequenceLiteralValue(Sequence):
    _TUPLE_LIKE = 'testlist_star_expr', 'testlist', 'subscriptlist'
    mapping = {'(': 'tuple',
               '[': 'list',
               '{': 'set'}

    def __init__(self, inference_state, defining_context, atom):
        super().__init__(inference_state)
        self.atom = atom
        self._defining_context = defining_context

        if self.atom.type in self._TUPLE_LIKE:
            self.array_type = 'tuple'
        else:
            self.array_type = SequenceLiteralValue.mapping[atom.children[0]]
            """The builtin name of the array (list, set, tuple or dict)."""

    def _get_generics(self):
        if self.array_type == 'tuple':
            return tuple(x.infer().py__class__() for x in self.py__iter__())
        return super()._get_generics()

    def py__simple_getitem__(self, index):
        """Here the index is an int/str. Raises IndexError/KeyError."""
        if isinstance(index, slice):
            return ValueSet([self])
        else:
            with reraise_getitem_errors(TypeError, KeyError, IndexError):
                node = self.get_tree_entries()[index]
            if node == ':' or node.type == 'subscript':
                return NO_VALUES
            return self._defining_context.infer_node(node)

    def py__iter__(self, contextualized_node=None):
        """
        While values returns the possible values for any array field, this
        function returns the value for a certain index.
        """
        for node in self.get_tree_entries():
            if node == ':' or node.type == 'subscript':
                # TODO this should probably use at least part of the code
                #      of infer_subscript_list.
                yield LazyKnownValue(Slice(self._defining_context, None, None, None))
            else:
                yield LazyTreeValue(self._defining_context, node)
        yield from check_array_additions(self._defining_context, self)

    def py__len__(self):
        # This function is not really used often. It's more of a try.
        return len(self.get_tree_entries())

    def get_tree_entries(self):
        c = self.atom.children

        if self.atom.type in self._TUPLE_LIKE:
            return c[::2]

        array_node = c[1]
        if array_node in (']', '}', ')'):
            return []  # Direct closing bracket, doesn't contain items.

        if array_node.type == 'testlist_comp':
            # filter out (for now) pep 448 single-star unpacking
            return [value for value in array_node.children[::2]
                    if value.type != "star_expr"]
        elif array_node.type == 'dictorsetmaker':
            kv = []
            iterator = iter(array_node.children)
            for key in iterator:
                if key == "**":
                    # dict with pep 448 double-star unpacking
                    # for now ignoring the values imported by **
                    next(iterator)
                    next(iterator, None)  # Possible comma.
                else:
                    op = next(iterator, None)
                    if op is None or op == ',':
                        if key.type == "star_expr":
                            # pep 448 single-star unpacking
                            # for now ignoring values imported by *
                            pass
                        else:
                            kv.append(key)  # A set.
                    else:
                        assert op == ':'  # A dict.
                        kv.append((key, next(iterator)))
                        next(iterator, None)  # Possible comma.
            return kv
        else:
            if array_node.type == "star_expr":
                # pep 448 single-star unpacking
                # for now ignoring values imported by *
                return []
            else:
                return [array_node]

    def __repr__(self):
        return "<%s of %s>" % (self.__class__.__name__, self.atom)


class DictLiteralValue(_DictMixin, SequenceLiteralValue, _DictKeyMixin):
    array_type = 'dict'

    def __init__(self, inference_state, defining_context, atom):
        # Intentionally don't call the super class. This is definitely a sign
        # that the architecture is bad and we should refactor.
        Sequence.__init__(self, inference_state)
        self._defining_context = defining_context
        self.atom = atom

    def py__simple_getitem__(self, index):
        """Here the index is an int/str. Raises IndexError/KeyError."""
        compiled_value_index = compiled.create_simple_object(self.inference_state, index)
        for key, value in self.get_tree_entries():
            for k in self._defining_context.infer_node(key):
                for key_v in k.execute_operation(compiled_value_index, '=='):
                    if key_v.get_safe_value():
                        return self._defining_context.infer_node(value)
        raise SimpleGetItemNotFound('No key found in dictionary %s.' % self)

    def py__iter__(self, contextualized_node=None):
        """
        While values returns the possible values for any array field, this
        function returns the value for a certain index.
        """
        # Get keys.
        types = NO_VALUES
        for k, _ in self.get_tree_entries():
            types |= self._defining_context.infer_node(k)
        # We don't know which dict index comes first, therefore always
        # yield all the types.
        for _ in types:
            yield LazyKnownValues(types)

    @publish_method('values')
    def _imitate_values(self, arguments):
        lazy_value = LazyKnownValues(self._dict_values())
        return ValueSet([FakeList(self.inference_state, [lazy_value])])

    @publish_method('items')
    def _imitate_items(self, arguments):
        lazy_values = [
            LazyKnownValue(FakeTuple(
                self.inference_state,
                (LazyTreeValue(self._defining_context, key_node),
                 LazyTreeValue(self._defining_context, value_node))
            )) for key_node, value_node in self.get_tree_entries()
        ]

        return ValueSet([FakeList(self.inference_state, lazy_values)])

    def exact_key_items(self):
        """
        Returns a generator of tuples like dict.items(), where the key is
        resolved (as a string) and the values are still lazy values.
        """
        for key_node, value in self.get_tree_entries():
            for key in self._defining_context.infer_node(key_node):
                if is_string(key):
                    yield key.get_safe_value(), LazyTreeValue(self._defining_context, value)

    def _dict_values(self):
        return ValueSet.from_sets(
            self._defining_context.infer_node(v)
            for k, v in self.get_tree_entries()
        )

    def _dict_keys(self):
        return ValueSet.from_sets(
            self._defining_context.infer_node(k)
            for k, v in self.get_tree_entries()
        )


class _FakeSequence(Sequence):
    def __init__(self, inference_state, lazy_value_list):
        """
        type should be one of "tuple", "list"
        """
        super().__init__(inference_state)
        self._lazy_value_list = lazy_value_list

    def py__simple_getitem__(self, index):
        if isinstance(index, slice):
            return ValueSet([self])

        with reraise_getitem_errors(IndexError, TypeError):
            lazy_value = self._lazy_value_list[index]
        return lazy_value.infer()

    def py__iter__(self, contextualized_node=None):
        return self._lazy_value_list

    def py__bool__(self):
        return bool(len(self._lazy_value_list))

    def __repr__(self):
        return "<%s of %s>" % (type(self).__name__, self._lazy_value_list)


class FakeTuple(_FakeSequence):
    array_type = 'tuple'


class FakeList(_FakeSequence):
    array_type = 'tuple'


class FakeDict(_DictMixin, Sequence, _DictKeyMixin):
    array_type = 'dict'

    def __init__(self, inference_state, dct):
        super().__init__(inference_state)
        self._dct = dct

    def py__iter__(self, contextualized_node=None):
        for key in self._dct:
            yield LazyKnownValue(compiled.create_simple_object(self.inference_state, key))

    def py__simple_getitem__(self, index):
        with reraise_getitem_errors(KeyError, TypeError):
            lazy_value = self._dct[index]
        return lazy_value.infer()

    @publish_method('values')
    def _values(self, arguments):
        return ValueSet([FakeTuple(
            self.inference_state,
            [LazyKnownValues(self._dict_values())]
        )])

    def _dict_values(self):
        return ValueSet.from_sets(lazy_value.infer() for lazy_value in self._dct.values())

    def _dict_keys(self):
        return ValueSet.from_sets(lazy_value.infer() for lazy_value in self.py__iter__())

    def exact_key_items(self):
        return self._dct.items()

    def __repr__(self):
        return '<%s: %s>' % (self.__class__.__name__, self._dct)


class MergedArray(Sequence):
    def __init__(self, inference_state, arrays):
        super().__init__(inference_state)
        self.array_type = arrays[-1].array_type
        self._arrays = arrays

    def py__iter__(self, contextualized_node=None):
        for array in self._arrays:
            yield from array.py__iter__()

    def py__simple_getitem__(self, index):
        return ValueSet.from_sets(lazy_value.infer() for lazy_value in self.py__iter__())


def unpack_tuple_to_dict(context, types, exprlist):
    """
    Unpacking tuple assignments in for statements and expr_stmts.
    """
    if exprlist.type == 'name':
        return {exprlist.value: types}
    elif exprlist.type == 'atom' and exprlist.children[0] in ('(', '['):
        return unpack_tuple_to_dict(context, types, exprlist.children[1])
    elif exprlist.type in ('testlist', 'testlist_comp', 'exprlist',
                           'testlist_star_expr'):
        dct = {}
        parts = iter(exprlist.children[::2])
        n = 0
        for lazy_value in types.iterate(ContextualizedNode(context, exprlist)):
            n += 1
            try:
                part = next(parts)
            except StopIteration:
                analysis.add(context, 'value-error-too-many-values', part,
                             message="ValueError: too many values to unpack (expected %s)" % n)
            else:
                dct.update(unpack_tuple_to_dict(context, lazy_value.infer(), part))
        has_parts = next(parts, None)
        if types and has_parts is not None:
            analysis.add(context, 'value-error-too-few-values', has_parts,
                         message="ValueError: need more than %s values to unpack" % n)
        return dct
    elif exprlist.type == 'power' or exprlist.type == 'atom_expr':
        # Something like ``arr[x], var = ...``.
        # This is something that is not yet supported, would also be difficult
        # to write into a dict.
        return {}
    elif exprlist.type == 'star_expr':  # `a, *b, c = x` type unpackings
        # Currently we're not supporting them.
        return {}
    raise NotImplementedError


class Slice(LazyValueWrapper):
    def __init__(self, python_context, start, stop, step):
        self.inference_state = python_context.inference_state
        self._context = python_context
        # All of them are either a Precedence or None.
        self._start = start
        self._stop = stop
        self._step = step

    def _get_wrapped_value(self):
        value = compiled.builtin_from_name(self._context.inference_state, 'slice')
        slice_value, = value.execute_with_values()
        return slice_value

    def get_safe_value(self, default=sentinel):
        """
        Imitate CompiledValue.obj behavior and return a ``builtin.slice()``
        object.
        """
        def get(element):
            if element is None:
                return None

            result = self._context.infer_node(element)
            if len(result) != 1:
                # For simplicity, we want slices to be clear defined with just
                # one type.  Otherwise we will return an empty slice object.
                raise IndexError

            value, = result
            return get_int_or_none(value)

        try:
            return slice(get(self._start), get(self._stop), get(self._step))
        except IndexError:
            return slice(None, None, None)