File size: 11,278 Bytes
d1ceb73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
"""Provides algorithms supporting the computation of graph polynomials.
Graph polynomials are polynomial-valued graph invariants that encode a wide
variety of structural information. Examples include the Tutte polynomial,
chromatic polynomial, characteristic polynomial, and matching polynomial. An
extensive treatment is provided in [1]_.
For a simple example, the `~sympy.matrices.matrices.MatrixDeterminant.charpoly`
method can be used to compute the characteristic polynomial from the adjacency
matrix of a graph. Consider the complete graph ``K_4``:
>>> import sympy
>>> x = sympy.Symbol("x")
>>> G = nx.complete_graph(4)
>>> A = nx.adjacency_matrix(G)
>>> M = sympy.SparseMatrix(A.todense())
>>> M.charpoly(x).as_expr()
x**4 - 6*x**2 - 8*x - 3
.. [1] Y. Shi, M. Dehmer, X. Li, I. Gutman,
"Graph Polynomials"
"""
from collections import deque
import networkx as nx
from networkx.utils import not_implemented_for
__all__ = ["tutte_polynomial", "chromatic_polynomial"]
@not_implemented_for("directed")
@nx._dispatchable
def tutte_polynomial(G):
r"""Returns the Tutte polynomial of `G`
This function computes the Tutte polynomial via an iterative version of
the deletion-contraction algorithm.
The Tutte polynomial `T_G(x, y)` is a fundamental graph polynomial invariant in
two variables. It encodes a wide array of information related to the
edge-connectivity of a graph; "Many problems about graphs can be reduced to
problems of finding and evaluating the Tutte polynomial at certain values" [1]_.
In fact, every deletion-contraction-expressible feature of a graph is a
specialization of the Tutte polynomial [2]_ (see Notes for examples).
There are several equivalent definitions; here are three:
Def 1 (rank-nullity expansion): For `G` an undirected graph, `n(G)` the
number of vertices of `G`, `E` the edge set of `G`, `V` the vertex set of
`G`, and `c(A)` the number of connected components of the graph with vertex
set `V` and edge set `A` [3]_:
.. math::
T_G(x, y) = \sum_{A \in E} (x-1)^{c(A) - c(E)} (y-1)^{c(A) + |A| - n(G)}
Def 2 (spanning tree expansion): Let `G` be an undirected graph, `T` a spanning
tree of `G`, and `E` the edge set of `G`. Let `E` have an arbitrary strict
linear order `L`. Let `B_e` be the unique minimal nonempty edge cut of
$E \setminus T \cup {e}$. An edge `e` is internally active with respect to
`T` and `L` if `e` is the least edge in `B_e` according to the linear order
`L`. The internal activity of `T` (denoted `i(T)`) is the number of edges
in $E \setminus T$ that are internally active with respect to `T` and `L`.
Let `P_e` be the unique path in $T \cup {e}$ whose source and target vertex
are the same. An edge `e` is externally active with respect to `T` and `L`
if `e` is the least edge in `P_e` according to the linear order `L`. The
external activity of `T` (denoted `e(T)`) is the number of edges in
$E \setminus T$ that are externally active with respect to `T` and `L`.
Then [4]_ [5]_:
.. math::
T_G(x, y) = \sum_{T \text{ a spanning tree of } G} x^{i(T)} y^{e(T)}
Def 3 (deletion-contraction recurrence): For `G` an undirected graph, `G-e`
the graph obtained from `G` by deleting edge `e`, `G/e` the graph obtained
from `G` by contracting edge `e`, `k(G)` the number of cut-edges of `G`,
and `l(G)` the number of self-loops of `G`:
.. math::
T_G(x, y) = \begin{cases}
x^{k(G)} y^{l(G)}, & \text{if all edges are cut-edges or self-loops} \\
T_{G-e}(x, y) + T_{G/e}(x, y), & \text{otherwise, for an arbitrary edge $e$ not a cut-edge or loop}
\end{cases}
Parameters
----------
G : NetworkX graph
Returns
-------
instance of `sympy.core.add.Add`
A Sympy expression representing the Tutte polynomial for `G`.
Examples
--------
>>> C = nx.cycle_graph(5)
>>> nx.tutte_polynomial(C)
x**4 + x**3 + x**2 + x + y
>>> D = nx.diamond_graph()
>>> nx.tutte_polynomial(D)
x**3 + 2*x**2 + 2*x*y + x + y**2 + y
Notes
-----
Some specializations of the Tutte polynomial:
- `T_G(1, 1)` counts the number of spanning trees of `G`
- `T_G(1, 2)` counts the number of connected spanning subgraphs of `G`
- `T_G(2, 1)` counts the number of spanning forests in `G`
- `T_G(0, 2)` counts the number of strong orientations of `G`
- `T_G(2, 0)` counts the number of acyclic orientations of `G`
Edge contraction is defined and deletion-contraction is introduced in [6]_.
Combinatorial meaning of the coefficients is introduced in [7]_.
Universality, properties, and applications are discussed in [8]_.
Practically, up-front computation of the Tutte polynomial may be useful when
users wish to repeatedly calculate edge-connectivity-related information
about one or more graphs.
References
----------
.. [1] M. Brandt,
"The Tutte Polynomial."
Talking About Combinatorial Objects Seminar, 2015
https://math.berkeley.edu/~brandtm/talks/tutte.pdf
.. [2] A. Björklund, T. Husfeldt, P. Kaski, M. Koivisto,
"Computing the Tutte polynomial in vertex-exponential time"
49th Annual IEEE Symposium on Foundations of Computer Science, 2008
https://ieeexplore.ieee.org/abstract/document/4691000
.. [3] Y. Shi, M. Dehmer, X. Li, I. Gutman,
"Graph Polynomials," p. 14
.. [4] Y. Shi, M. Dehmer, X. Li, I. Gutman,
"Graph Polynomials," p. 46
.. [5] A. Nešetril, J. Goodall,
"Graph invariants, homomorphisms, and the Tutte polynomial"
https://iuuk.mff.cuni.cz/~andrew/Tutte.pdf
.. [6] D. B. West,
"Introduction to Graph Theory," p. 84
.. [7] G. Coutinho,
"A brief introduction to the Tutte polynomial"
Structural Analysis of Complex Networks, 2011
https://homepages.dcc.ufmg.br/~gabriel/seminars/coutinho_tuttepolynomial_seminar.pdf
.. [8] J. A. Ellis-Monaghan, C. Merino,
"Graph polynomials and their applications I: The Tutte polynomial"
Structural Analysis of Complex Networks, 2011
https://arxiv.org/pdf/0803.3079.pdf
"""
import sympy
x = sympy.Symbol("x")
y = sympy.Symbol("y")
stack = deque()
stack.append(nx.MultiGraph(G))
polynomial = 0
while stack:
G = stack.pop()
bridges = set(nx.bridges(G))
e = None
for i in G.edges:
if (i[0], i[1]) not in bridges and i[0] != i[1]:
e = i
break
if not e:
loops = list(nx.selfloop_edges(G, keys=True))
polynomial += x ** len(bridges) * y ** len(loops)
else:
# deletion-contraction
C = nx.contracted_edge(G, e, self_loops=True)
C.remove_edge(e[0], e[0])
G.remove_edge(*e)
stack.append(G)
stack.append(C)
return sympy.simplify(polynomial)
@not_implemented_for("directed")
@nx._dispatchable
def chromatic_polynomial(G):
r"""Returns the chromatic polynomial of `G`
This function computes the chromatic polynomial via an iterative version of
the deletion-contraction algorithm.
The chromatic polynomial `X_G(x)` is a fundamental graph polynomial
invariant in one variable. Evaluating `X_G(k)` for an natural number `k`
enumerates the proper k-colorings of `G`.
There are several equivalent definitions; here are three:
Def 1 (explicit formula):
For `G` an undirected graph, `c(G)` the number of connected components of
`G`, `E` the edge set of `G`, and `G(S)` the spanning subgraph of `G` with
edge set `S` [1]_:
.. math::
X_G(x) = \sum_{S \subseteq E} (-1)^{|S|} x^{c(G(S))}
Def 2 (interpolating polynomial):
For `G` an undirected graph, `n(G)` the number of vertices of `G`, `k_0 = 0`,
and `k_i` the number of distinct ways to color the vertices of `G` with `i`
unique colors (for `i` a natural number at most `n(G)`), `X_G(x)` is the
unique Lagrange interpolating polynomial of degree `n(G)` through the points
`(0, k_0), (1, k_1), \dots, (n(G), k_{n(G)})` [2]_.
Def 3 (chromatic recurrence):
For `G` an undirected graph, `G-e` the graph obtained from `G` by deleting
edge `e`, `G/e` the graph obtained from `G` by contracting edge `e`, `n(G)`
the number of vertices of `G`, and `e(G)` the number of edges of `G` [3]_:
.. math::
X_G(x) = \begin{cases}
x^{n(G)}, & \text{if $e(G)=0$} \\
X_{G-e}(x) - X_{G/e}(x), & \text{otherwise, for an arbitrary edge $e$}
\end{cases}
This formulation is also known as the Fundamental Reduction Theorem [4]_.
Parameters
----------
G : NetworkX graph
Returns
-------
instance of `sympy.core.add.Add`
A Sympy expression representing the chromatic polynomial for `G`.
Examples
--------
>>> C = nx.cycle_graph(5)
>>> nx.chromatic_polynomial(C)
x**5 - 5*x**4 + 10*x**3 - 10*x**2 + 4*x
>>> G = nx.complete_graph(4)
>>> nx.chromatic_polynomial(G)
x**4 - 6*x**3 + 11*x**2 - 6*x
Notes
-----
Interpretation of the coefficients is discussed in [5]_. Several special
cases are listed in [2]_.
The chromatic polynomial is a specialization of the Tutte polynomial; in
particular, ``X_G(x) = T_G(x, 0)`` [6]_.
The chromatic polynomial may take negative arguments, though evaluations
may not have chromatic interpretations. For instance, ``X_G(-1)`` enumerates
the acyclic orientations of `G` [7]_.
References
----------
.. [1] D. B. West,
"Introduction to Graph Theory," p. 222
.. [2] E. W. Weisstein
"Chromatic Polynomial"
MathWorld--A Wolfram Web Resource
https://mathworld.wolfram.com/ChromaticPolynomial.html
.. [3] D. B. West,
"Introduction to Graph Theory," p. 221
.. [4] J. Zhang, J. Goodall,
"An Introduction to Chromatic Polynomials"
https://math.mit.edu/~apost/courses/18.204_2018/Julie_Zhang_paper.pdf
.. [5] R. C. Read,
"An Introduction to Chromatic Polynomials"
Journal of Combinatorial Theory, 1968
https://math.berkeley.edu/~mrklug/ReadChromatic.pdf
.. [6] W. T. Tutte,
"Graph-polynomials"
Advances in Applied Mathematics, 2004
https://www.sciencedirect.com/science/article/pii/S0196885803000411
.. [7] R. P. Stanley,
"Acyclic orientations of graphs"
Discrete Mathematics, 2006
https://math.mit.edu/~rstan/pubs/pubfiles/18.pdf
"""
import sympy
x = sympy.Symbol("x")
stack = deque()
stack.append(nx.MultiGraph(G, contraction_idx=0))
polynomial = 0
while stack:
G = stack.pop()
edges = list(G.edges)
if not edges:
polynomial += (-1) ** G.graph["contraction_idx"] * x ** len(G)
else:
e = edges[0]
C = nx.contracted_edge(G, e, self_loops=True)
C.graph["contraction_idx"] = G.graph["contraction_idx"] + 1
C.remove_edge(e[0], e[0])
G.remove_edge(*e)
stack.append(G)
stack.append(C)
return polynomial
|