File size: 6,793 Bytes
d1ceb73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
"""Functions for computing and verifying regular graphs."""
import networkx as nx
from networkx.utils import not_implemented_for
__all__ = ["is_regular", "is_k_regular", "k_factor"]
@nx._dispatchable
def is_regular(G):
"""Determines whether the graph ``G`` is a regular graph.
A regular graph is a graph where each vertex has the same degree. A
regular digraph is a graph where the indegree and outdegree of each
vertex are equal.
Parameters
----------
G : NetworkX graph
Returns
-------
bool
Whether the given graph or digraph is regular.
Examples
--------
>>> G = nx.DiGraph([(1, 2), (2, 3), (3, 4), (4, 1)])
>>> nx.is_regular(G)
True
"""
if len(G) == 0:
raise nx.NetworkXPointlessConcept("Graph has no nodes.")
n1 = nx.utils.arbitrary_element(G)
if not G.is_directed():
d1 = G.degree(n1)
return all(d1 == d for _, d in G.degree)
else:
d_in = G.in_degree(n1)
in_regular = all(d_in == d for _, d in G.in_degree)
d_out = G.out_degree(n1)
out_regular = all(d_out == d for _, d in G.out_degree)
return in_regular and out_regular
@not_implemented_for("directed")
@nx._dispatchable
def is_k_regular(G, k):
"""Determines whether the graph ``G`` is a k-regular graph.
A k-regular graph is a graph where each vertex has degree k.
Parameters
----------
G : NetworkX graph
Returns
-------
bool
Whether the given graph is k-regular.
Examples
--------
>>> G = nx.Graph([(1, 2), (2, 3), (3, 4), (4, 1)])
>>> nx.is_k_regular(G, k=3)
False
"""
return all(d == k for n, d in G.degree)
@not_implemented_for("directed")
@not_implemented_for("multigraph")
@nx._dispatchable(preserve_edge_attrs=True, returns_graph=True)
def k_factor(G, k, matching_weight="weight"):
"""Compute a k-factor of G
A k-factor of a graph is a spanning k-regular subgraph.
A spanning k-regular subgraph of G is a subgraph that contains
each vertex of G and a subset of the edges of G such that each
vertex has degree k.
Parameters
----------
G : NetworkX graph
Undirected graph
matching_weight: string, optional (default='weight')
Edge data key corresponding to the edge weight.
Used for finding the max-weighted perfect matching.
If key not found, uses 1 as weight.
Returns
-------
G2 : NetworkX graph
A k-factor of G
Examples
--------
>>> G = nx.Graph([(1, 2), (2, 3), (3, 4), (4, 1)])
>>> G2 = nx.k_factor(G, k=1)
>>> G2.edges()
EdgeView([(1, 2), (3, 4)])
References
----------
.. [1] "An algorithm for computing simple k-factors.",
Meijer, Henk, Yurai Núñez-Rodríguez, and David Rappaport,
Information processing letters, 2009.
"""
from networkx.algorithms.matching import is_perfect_matching, max_weight_matching
class LargeKGadget:
def __init__(self, k, degree, node, g):
self.original = node
self.g = g
self.k = k
self.degree = degree
self.outer_vertices = [(node, x) for x in range(degree)]
self.core_vertices = [(node, x + degree) for x in range(degree - k)]
def replace_node(self):
adj_view = self.g[self.original]
neighbors = list(adj_view.keys())
edge_attrs = list(adj_view.values())
for outer, neighbor, edge_attrs in zip(
self.outer_vertices, neighbors, edge_attrs
):
self.g.add_edge(outer, neighbor, **edge_attrs)
for core in self.core_vertices:
for outer in self.outer_vertices:
self.g.add_edge(core, outer)
self.g.remove_node(self.original)
def restore_node(self):
self.g.add_node(self.original)
for outer in self.outer_vertices:
adj_view = self.g[outer]
for neighbor, edge_attrs in list(adj_view.items()):
if neighbor not in self.core_vertices:
self.g.add_edge(self.original, neighbor, **edge_attrs)
break
g.remove_nodes_from(self.outer_vertices)
g.remove_nodes_from(self.core_vertices)
class SmallKGadget:
def __init__(self, k, degree, node, g):
self.original = node
self.k = k
self.degree = degree
self.g = g
self.outer_vertices = [(node, x) for x in range(degree)]
self.inner_vertices = [(node, x + degree) for x in range(degree)]
self.core_vertices = [(node, x + 2 * degree) for x in range(k)]
def replace_node(self):
adj_view = self.g[self.original]
for outer, inner, (neighbor, edge_attrs) in zip(
self.outer_vertices, self.inner_vertices, list(adj_view.items())
):
self.g.add_edge(outer, inner)
self.g.add_edge(outer, neighbor, **edge_attrs)
for core in self.core_vertices:
for inner in self.inner_vertices:
self.g.add_edge(core, inner)
self.g.remove_node(self.original)
def restore_node(self):
self.g.add_node(self.original)
for outer in self.outer_vertices:
adj_view = self.g[outer]
for neighbor, edge_attrs in adj_view.items():
if neighbor not in self.core_vertices:
self.g.add_edge(self.original, neighbor, **edge_attrs)
break
self.g.remove_nodes_from(self.outer_vertices)
self.g.remove_nodes_from(self.inner_vertices)
self.g.remove_nodes_from(self.core_vertices)
# Step 1
if any(d < k for _, d in G.degree):
raise nx.NetworkXUnfeasible("Graph contains a vertex with degree less than k")
g = G.copy()
# Step 2
gadgets = []
for node, degree in list(g.degree):
if k < degree / 2.0:
gadget = SmallKGadget(k, degree, node, g)
else:
gadget = LargeKGadget(k, degree, node, g)
gadget.replace_node()
gadgets.append(gadget)
# Step 3
matching = max_weight_matching(g, maxcardinality=True, weight=matching_weight)
# Step 4
if not is_perfect_matching(g, matching):
raise nx.NetworkXUnfeasible(
"Cannot find k-factor because no perfect matching exists"
)
for edge in g.edges():
if edge not in matching and (edge[1], edge[0]) not in matching:
g.remove_edge(edge[0], edge[1])
for gadget in gadgets:
gadget.restore_node()
return g
|