File size: 16,852 Bytes
d1ceb73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 |
# See https://github.com/networkx/networkx/pull/1474
# Copyright 2011 Reya Group <http://www.reyagroup.com>
# Copyright 2011 Alex Levenson <[email protected]>
# Copyright 2011 Diederik van Liere <[email protected]>
"""Functions for analyzing triads of a graph."""
from collections import defaultdict
from itertools import combinations, permutations
import networkx as nx
from networkx.utils import not_implemented_for, py_random_state
__all__ = [
"triadic_census",
"is_triad",
"all_triplets",
"all_triads",
"triads_by_type",
"triad_type",
"random_triad",
]
#: The integer codes representing each type of triad.
#:
#: Triads that are the same up to symmetry have the same code.
TRICODES = (
1,
2,
2,
3,
2,
4,
6,
8,
2,
6,
5,
7,
3,
8,
7,
11,
2,
6,
4,
8,
5,
9,
9,
13,
6,
10,
9,
14,
7,
14,
12,
15,
2,
5,
6,
7,
6,
9,
10,
14,
4,
9,
9,
12,
8,
13,
14,
15,
3,
7,
8,
11,
7,
12,
14,
15,
8,
14,
13,
15,
11,
15,
15,
16,
)
#: The names of each type of triad. The order of the elements is
#: important: it corresponds to the tricodes given in :data:`TRICODES`.
TRIAD_NAMES = (
"003",
"012",
"102",
"021D",
"021U",
"021C",
"111D",
"111U",
"030T",
"030C",
"201",
"120D",
"120U",
"120C",
"210",
"300",
)
#: A dictionary mapping triad code to triad name.
TRICODE_TO_NAME = {i: TRIAD_NAMES[code - 1] for i, code in enumerate(TRICODES)}
def _tricode(G, v, u, w):
"""Returns the integer code of the given triad.
This is some fancy magic that comes from Batagelj and Mrvar's paper. It
treats each edge joining a pair of `v`, `u`, and `w` as a bit in
the binary representation of an integer.
"""
combos = ((v, u, 1), (u, v, 2), (v, w, 4), (w, v, 8), (u, w, 16), (w, u, 32))
return sum(x for u, v, x in combos if v in G[u])
@not_implemented_for("undirected")
@nx._dispatchable
def triadic_census(G, nodelist=None):
"""Determines the triadic census of a directed graph.
The triadic census is a count of how many of the 16 possible types of
triads are present in a directed graph. If a list of nodes is passed, then
only those triads are taken into account which have elements of nodelist in them.
Parameters
----------
G : digraph
A NetworkX DiGraph
nodelist : list
List of nodes for which you want to calculate triadic census
Returns
-------
census : dict
Dictionary with triad type as keys and number of occurrences as values.
Examples
--------
>>> G = nx.DiGraph([(1, 2), (2, 3), (3, 1), (3, 4), (4, 1), (4, 2)])
>>> triadic_census = nx.triadic_census(G)
>>> for key, value in triadic_census.items():
... print(f"{key}: {value}")
003: 0
012: 0
102: 0
021D: 0
021U: 0
021C: 0
111D: 0
111U: 0
030T: 2
030C: 2
201: 0
120D: 0
120U: 0
120C: 0
210: 0
300: 0
Notes
-----
This algorithm has complexity $O(m)$ where $m$ is the number of edges in
the graph.
For undirected graphs, the triadic census can be computed by first converting
the graph into a directed graph using the ``G.to_directed()`` method.
After this conversion, only the triad types 003, 102, 201 and 300 will be
present in the undirected scenario.
Raises
------
ValueError
If `nodelist` contains duplicate nodes or nodes not in `G`.
If you want to ignore this you can preprocess with `set(nodelist) & G.nodes`
See also
--------
triad_graph
References
----------
.. [1] Vladimir Batagelj and Andrej Mrvar, A subquadratic triad census
algorithm for large sparse networks with small maximum degree,
University of Ljubljana,
http://vlado.fmf.uni-lj.si/pub/networks/doc/triads/triads.pdf
"""
nodeset = set(G.nbunch_iter(nodelist))
if nodelist is not None and len(nodelist) != len(nodeset):
raise ValueError("nodelist includes duplicate nodes or nodes not in G")
N = len(G)
Nnot = N - len(nodeset) # can signal special counting for subset of nodes
# create an ordering of nodes with nodeset nodes first
m = {n: i for i, n in enumerate(nodeset)}
if Nnot:
# add non-nodeset nodes later in the ordering
not_nodeset = G.nodes - nodeset
m.update((n, i + N) for i, n in enumerate(not_nodeset))
# build all_neighbor dicts for easy counting
# After Python 3.8 can leave off these keys(). Speedup also using G._pred
# nbrs = {n: G._pred[n].keys() | G._succ[n].keys() for n in G}
nbrs = {n: G.pred[n].keys() | G.succ[n].keys() for n in G}
dbl_nbrs = {n: G.pred[n].keys() & G.succ[n].keys() for n in G}
if Nnot:
sgl_nbrs = {n: G.pred[n].keys() ^ G.succ[n].keys() for n in not_nodeset}
# find number of edges not incident to nodes in nodeset
sgl = sum(1 for n in not_nodeset for nbr in sgl_nbrs[n] if nbr not in nodeset)
sgl_edges_outside = sgl // 2
dbl = sum(1 for n in not_nodeset for nbr in dbl_nbrs[n] if nbr not in nodeset)
dbl_edges_outside = dbl // 2
# Initialize the count for each triad to be zero.
census = {name: 0 for name in TRIAD_NAMES}
# Main loop over nodes
for v in nodeset:
vnbrs = nbrs[v]
dbl_vnbrs = dbl_nbrs[v]
if Nnot:
# set up counts of edges attached to v.
sgl_unbrs_bdy = sgl_unbrs_out = dbl_unbrs_bdy = dbl_unbrs_out = 0
for u in vnbrs:
if m[u] <= m[v]:
continue
unbrs = nbrs[u]
neighbors = (vnbrs | unbrs) - {u, v}
# Count connected triads.
for w in neighbors:
if m[u] < m[w] or (m[v] < m[w] < m[u] and v not in nbrs[w]):
code = _tricode(G, v, u, w)
census[TRICODE_TO_NAME[code]] += 1
# Use a formula for dyadic triads with edge incident to v
if u in dbl_vnbrs:
census["102"] += N - len(neighbors) - 2
else:
census["012"] += N - len(neighbors) - 2
# Count edges attached to v. Subtract later to get triads with v isolated
# _out are (u,unbr) for unbrs outside boundary of nodeset
# _bdy are (u,unbr) for unbrs on boundary of nodeset (get double counted)
if Nnot and u not in nodeset:
sgl_unbrs = sgl_nbrs[u]
sgl_unbrs_bdy += len(sgl_unbrs & vnbrs - nodeset)
sgl_unbrs_out += len(sgl_unbrs - vnbrs - nodeset)
dbl_unbrs = dbl_nbrs[u]
dbl_unbrs_bdy += len(dbl_unbrs & vnbrs - nodeset)
dbl_unbrs_out += len(dbl_unbrs - vnbrs - nodeset)
# if nodeset == G.nodes, skip this b/c we will find the edge later.
if Nnot:
# Count edges outside nodeset not connected with v (v isolated triads)
census["012"] += sgl_edges_outside - (sgl_unbrs_out + sgl_unbrs_bdy // 2)
census["102"] += dbl_edges_outside - (dbl_unbrs_out + dbl_unbrs_bdy // 2)
# calculate null triads: "003"
# null triads = total number of possible triads - all found triads
total_triangles = (N * (N - 1) * (N - 2)) // 6
triangles_without_nodeset = (Nnot * (Nnot - 1) * (Nnot - 2)) // 6
total_census = total_triangles - triangles_without_nodeset
census["003"] = total_census - sum(census.values())
return census
@nx._dispatchable
def is_triad(G):
"""Returns True if the graph G is a triad, else False.
Parameters
----------
G : graph
A NetworkX Graph
Returns
-------
istriad : boolean
Whether G is a valid triad
Examples
--------
>>> G = nx.DiGraph([(1, 2), (2, 3), (3, 1)])
>>> nx.is_triad(G)
True
>>> G.add_edge(0, 1)
>>> nx.is_triad(G)
False
"""
if isinstance(G, nx.Graph):
if G.order() == 3 and nx.is_directed(G):
if not any((n, n) in G.edges() for n in G.nodes()):
return True
return False
@not_implemented_for("undirected")
@nx._dispatchable
def all_triplets(G):
"""Returns a generator of all possible sets of 3 nodes in a DiGraph.
.. deprecated:: 3.3
all_triplets is deprecated and will be removed in NetworkX version 3.5.
Use `itertools.combinations` instead::
all_triplets = itertools.combinations(G, 3)
Parameters
----------
G : digraph
A NetworkX DiGraph
Returns
-------
triplets : generator of 3-tuples
Generator of tuples of 3 nodes
Examples
--------
>>> G = nx.DiGraph([(1, 2), (2, 3), (3, 4)])
>>> list(nx.all_triplets(G))
[(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)]
"""
import warnings
warnings.warn(
(
"\n\nall_triplets is deprecated and will be rmoved in v3.5.\n"
"Use `itertools.combinations(G, 3)` instead."
),
category=DeprecationWarning,
stacklevel=4,
)
triplets = combinations(G.nodes(), 3)
return triplets
@not_implemented_for("undirected")
@nx._dispatchable(returns_graph=True)
def all_triads(G):
"""A generator of all possible triads in G.
Parameters
----------
G : digraph
A NetworkX DiGraph
Returns
-------
all_triads : generator of DiGraphs
Generator of triads (order-3 DiGraphs)
Examples
--------
>>> G = nx.DiGraph([(1, 2), (2, 3), (3, 1), (3, 4), (4, 1), (4, 2)])
>>> for triad in nx.all_triads(G):
... print(triad.edges)
[(1, 2), (2, 3), (3, 1)]
[(1, 2), (4, 1), (4, 2)]
[(3, 1), (3, 4), (4, 1)]
[(2, 3), (3, 4), (4, 2)]
"""
triplets = combinations(G.nodes(), 3)
for triplet in triplets:
yield G.subgraph(triplet).copy()
@not_implemented_for("undirected")
@nx._dispatchable
def triads_by_type(G):
"""Returns a list of all triads for each triad type in a directed graph.
There are exactly 16 different types of triads possible. Suppose 1, 2, 3 are three
nodes, they will be classified as a particular triad type if their connections
are as follows:
- 003: 1, 2, 3
- 012: 1 -> 2, 3
- 102: 1 <-> 2, 3
- 021D: 1 <- 2 -> 3
- 021U: 1 -> 2 <- 3
- 021C: 1 -> 2 -> 3
- 111D: 1 <-> 2 <- 3
- 111U: 1 <-> 2 -> 3
- 030T: 1 -> 2 -> 3, 1 -> 3
- 030C: 1 <- 2 <- 3, 1 -> 3
- 201: 1 <-> 2 <-> 3
- 120D: 1 <- 2 -> 3, 1 <-> 3
- 120U: 1 -> 2 <- 3, 1 <-> 3
- 120C: 1 -> 2 -> 3, 1 <-> 3
- 210: 1 -> 2 <-> 3, 1 <-> 3
- 300: 1 <-> 2 <-> 3, 1 <-> 3
Refer to the :doc:`example gallery </auto_examples/graph/plot_triad_types>`
for visual examples of the triad types.
Parameters
----------
G : digraph
A NetworkX DiGraph
Returns
-------
tri_by_type : dict
Dictionary with triad types as keys and lists of triads as values.
Examples
--------
>>> G = nx.DiGraph([(1, 2), (1, 3), (2, 3), (3, 1), (5, 6), (5, 4), (6, 7)])
>>> dict = nx.triads_by_type(G)
>>> dict["120C"][0].edges()
OutEdgeView([(1, 2), (1, 3), (2, 3), (3, 1)])
>>> dict["012"][0].edges()
OutEdgeView([(1, 2)])
References
----------
.. [1] Snijders, T. (2012). "Transitivity and triads." University of
Oxford.
https://web.archive.org/web/20170830032057/http://www.stats.ox.ac.uk/~snijders/Trans_Triads_ha.pdf
"""
# num_triads = o * (o - 1) * (o - 2) // 6
# if num_triads > TRIAD_LIMIT: print(WARNING)
all_tri = all_triads(G)
tri_by_type = defaultdict(list)
for triad in all_tri:
name = triad_type(triad)
tri_by_type[name].append(triad)
return tri_by_type
@not_implemented_for("undirected")
@nx._dispatchable
def triad_type(G):
"""Returns the sociological triad type for a triad.
Parameters
----------
G : digraph
A NetworkX DiGraph with 3 nodes
Returns
-------
triad_type : str
A string identifying the triad type
Examples
--------
>>> G = nx.DiGraph([(1, 2), (2, 3), (3, 1)])
>>> nx.triad_type(G)
'030C'
>>> G.add_edge(1, 3)
>>> nx.triad_type(G)
'120C'
Notes
-----
There can be 6 unique edges in a triad (order-3 DiGraph) (so 2^^6=64 unique
triads given 3 nodes). These 64 triads each display exactly 1 of 16
topologies of triads (topologies can be permuted). These topologies are
identified by the following notation:
{m}{a}{n}{type} (for example: 111D, 210, 102)
Here:
{m} = number of mutual ties (takes 0, 1, 2, 3); a mutual tie is (0,1)
AND (1,0)
{a} = number of asymmetric ties (takes 0, 1, 2, 3); an asymmetric tie
is (0,1) BUT NOT (1,0) or vice versa
{n} = number of null ties (takes 0, 1, 2, 3); a null tie is NEITHER
(0,1) NOR (1,0)
{type} = a letter (takes U, D, C, T) corresponding to up, down, cyclical
and transitive. This is only used for topologies that can have
more than one form (eg: 021D and 021U).
References
----------
.. [1] Snijders, T. (2012). "Transitivity and triads." University of
Oxford.
https://web.archive.org/web/20170830032057/http://www.stats.ox.ac.uk/~snijders/Trans_Triads_ha.pdf
"""
if not is_triad(G):
raise nx.NetworkXAlgorithmError("G is not a triad (order-3 DiGraph)")
num_edges = len(G.edges())
if num_edges == 0:
return "003"
elif num_edges == 1:
return "012"
elif num_edges == 2:
e1, e2 = G.edges()
if set(e1) == set(e2):
return "102"
elif e1[0] == e2[0]:
return "021D"
elif e1[1] == e2[1]:
return "021U"
elif e1[1] == e2[0] or e2[1] == e1[0]:
return "021C"
elif num_edges == 3:
for e1, e2, e3 in permutations(G.edges(), 3):
if set(e1) == set(e2):
if e3[0] in e1:
return "111U"
# e3[1] in e1:
return "111D"
elif set(e1).symmetric_difference(set(e2)) == set(e3):
if {e1[0], e2[0], e3[0]} == {e1[0], e2[0], e3[0]} == set(G.nodes()):
return "030C"
# e3 == (e1[0], e2[1]) and e2 == (e1[1], e3[1]):
return "030T"
elif num_edges == 4:
for e1, e2, e3, e4 in permutations(G.edges(), 4):
if set(e1) == set(e2):
# identify pair of symmetric edges (which necessarily exists)
if set(e3) == set(e4):
return "201"
if {e3[0]} == {e4[0]} == set(e3).intersection(set(e4)):
return "120D"
if {e3[1]} == {e4[1]} == set(e3).intersection(set(e4)):
return "120U"
if e3[1] == e4[0]:
return "120C"
elif num_edges == 5:
return "210"
elif num_edges == 6:
return "300"
@not_implemented_for("undirected")
@py_random_state(1)
@nx._dispatchable(preserve_all_attrs=True, returns_graph=True)
def random_triad(G, seed=None):
"""Returns a random triad from a directed graph.
.. deprecated:: 3.3
random_triad is deprecated and will be removed in version 3.5.
Use random sampling directly instead::
G.subgraph(random.sample(list(G), 3))
Parameters
----------
G : digraph
A NetworkX DiGraph
seed : integer, random_state, or None (default)
Indicator of random number generation state.
See :ref:`Randomness<randomness>`.
Returns
-------
G2 : subgraph
A randomly selected triad (order-3 NetworkX DiGraph)
Raises
------
NetworkXError
If the input Graph has less than 3 nodes.
Examples
--------
>>> G = nx.DiGraph([(1, 2), (1, 3), (2, 3), (3, 1), (5, 6), (5, 4), (6, 7)])
>>> triad = nx.random_triad(G, seed=1)
>>> triad.edges
OutEdgeView([(1, 2)])
"""
import warnings
warnings.warn(
(
"\n\nrandom_triad is deprecated and will be removed in NetworkX v3.5.\n"
"Use random.sample instead, e.g.::\n\n"
"\tG.subgraph(random.sample(list(G), 3))\n"
),
category=DeprecationWarning,
stacklevel=5,
)
if len(G) < 3:
raise nx.NetworkXError(
f"G needs at least 3 nodes to form a triad; (it has {len(G)} nodes)"
)
nodes = seed.sample(list(G.nodes()), 3)
G2 = G.subgraph(nodes)
return G2
|