File size: 14,456 Bytes
d1ceb73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 |
"""Provides explicit constructions of expander graphs.
"""
import itertools
import networkx as nx
__all__ = [
"margulis_gabber_galil_graph",
"chordal_cycle_graph",
"paley_graph",
"maybe_regular_expander",
"is_regular_expander",
"random_regular_expander_graph",
]
# Other discrete torus expanders can be constructed by using the following edge
# sets. For more information, see Chapter 4, "Expander Graphs", in
# "Pseudorandomness", by Salil Vadhan.
#
# For a directed expander, add edges from (x, y) to:
#
# (x, y),
# ((x + 1) % n, y),
# (x, (y + 1) % n),
# (x, (x + y) % n),
# (-y % n, x)
#
# For an undirected expander, add the reverse edges.
#
# Also appearing in the paper of Gabber and Galil:
#
# (x, y),
# (x, (x + y) % n),
# (x, (x + y + 1) % n),
# ((x + y) % n, y),
# ((x + y + 1) % n, y)
#
# and:
#
# (x, y),
# ((x + 2*y) % n, y),
# ((x + (2*y + 1)) % n, y),
# ((x + (2*y + 2)) % n, y),
# (x, (y + 2*x) % n),
# (x, (y + (2*x + 1)) % n),
# (x, (y + (2*x + 2)) % n),
#
@nx._dispatchable(graphs=None, returns_graph=True)
def margulis_gabber_galil_graph(n, create_using=None):
r"""Returns the Margulis-Gabber-Galil undirected MultiGraph on `n^2` nodes.
The undirected MultiGraph is regular with degree `8`. Nodes are integer
pairs. The second-largest eigenvalue of the adjacency matrix of the graph
is at most `5 \sqrt{2}`, regardless of `n`.
Parameters
----------
n : int
Determines the number of nodes in the graph: `n^2`.
create_using : NetworkX graph constructor, optional (default MultiGraph)
Graph type to create. If graph instance, then cleared before populated.
Returns
-------
G : graph
The constructed undirected multigraph.
Raises
------
NetworkXError
If the graph is directed or not a multigraph.
"""
G = nx.empty_graph(0, create_using, default=nx.MultiGraph)
if G.is_directed() or not G.is_multigraph():
msg = "`create_using` must be an undirected multigraph."
raise nx.NetworkXError(msg)
for x, y in itertools.product(range(n), repeat=2):
for u, v in (
((x + 2 * y) % n, y),
((x + (2 * y + 1)) % n, y),
(x, (y + 2 * x) % n),
(x, (y + (2 * x + 1)) % n),
):
G.add_edge((x, y), (u, v))
G.graph["name"] = f"margulis_gabber_galil_graph({n})"
return G
@nx._dispatchable(graphs=None, returns_graph=True)
def chordal_cycle_graph(p, create_using=None):
"""Returns the chordal cycle graph on `p` nodes.
The returned graph is a cycle graph on `p` nodes with chords joining each
vertex `x` to its inverse modulo `p`. This graph is a (mildly explicit)
3-regular expander [1]_.
`p` *must* be a prime number.
Parameters
----------
p : a prime number
The number of vertices in the graph. This also indicates where the
chordal edges in the cycle will be created.
create_using : NetworkX graph constructor, optional (default=nx.Graph)
Graph type to create. If graph instance, then cleared before populated.
Returns
-------
G : graph
The constructed undirected multigraph.
Raises
------
NetworkXError
If `create_using` indicates directed or not a multigraph.
References
----------
.. [1] Theorem 4.4.2 in A. Lubotzky. "Discrete groups, expanding graphs and
invariant measures", volume 125 of Progress in Mathematics.
Birkhäuser Verlag, Basel, 1994.
"""
G = nx.empty_graph(0, create_using, default=nx.MultiGraph)
if G.is_directed() or not G.is_multigraph():
msg = "`create_using` must be an undirected multigraph."
raise nx.NetworkXError(msg)
for x in range(p):
left = (x - 1) % p
right = (x + 1) % p
# Here we apply Fermat's Little Theorem to compute the multiplicative
# inverse of x in Z/pZ. By Fermat's Little Theorem,
#
# x^p = x (mod p)
#
# Therefore,
#
# x * x^(p - 2) = 1 (mod p)
#
# The number 0 is a special case: we just let its inverse be itself.
chord = pow(x, p - 2, p) if x > 0 else 0
for y in (left, right, chord):
G.add_edge(x, y)
G.graph["name"] = f"chordal_cycle_graph({p})"
return G
@nx._dispatchable(graphs=None, returns_graph=True)
def paley_graph(p, create_using=None):
r"""Returns the Paley $\frac{(p-1)}{2}$ -regular graph on $p$ nodes.
The returned graph is a graph on $\mathbb{Z}/p\mathbb{Z}$ with edges between $x$ and $y$
if and only if $x-y$ is a nonzero square in $\mathbb{Z}/p\mathbb{Z}$.
If $p \equiv 1 \pmod 4$, $-1$ is a square in $\mathbb{Z}/p\mathbb{Z}$ and therefore $x-y$ is a square if and
only if $y-x$ is also a square, i.e the edges in the Paley graph are symmetric.
If $p \equiv 3 \pmod 4$, $-1$ is not a square in $\mathbb{Z}/p\mathbb{Z}$ and therefore either $x-y$ or $y-x$
is a square in $\mathbb{Z}/p\mathbb{Z}$ but not both.
Note that a more general definition of Paley graphs extends this construction
to graphs over $q=p^n$ vertices, by using the finite field $F_q$ instead of $\mathbb{Z}/p\mathbb{Z}$.
This construction requires to compute squares in general finite fields and is
not what is implemented here (i.e `paley_graph(25)` does not return the true
Paley graph associated with $5^2$).
Parameters
----------
p : int, an odd prime number.
create_using : NetworkX graph constructor, optional (default=nx.Graph)
Graph type to create. If graph instance, then cleared before populated.
Returns
-------
G : graph
The constructed directed graph.
Raises
------
NetworkXError
If the graph is a multigraph.
References
----------
Chapter 13 in B. Bollobas, Random Graphs. Second edition.
Cambridge Studies in Advanced Mathematics, 73.
Cambridge University Press, Cambridge (2001).
"""
G = nx.empty_graph(0, create_using, default=nx.DiGraph)
if G.is_multigraph():
msg = "`create_using` cannot be a multigraph."
raise nx.NetworkXError(msg)
# Compute the squares in Z/pZ.
# Make it a set to uniquify (there are exactly (p-1)/2 squares in Z/pZ
# when is prime).
square_set = {(x**2) % p for x in range(1, p) if (x**2) % p != 0}
for x in range(p):
for x2 in square_set:
G.add_edge(x, (x + x2) % p)
G.graph["name"] = f"paley({p})"
return G
@nx.utils.decorators.np_random_state("seed")
@nx._dispatchable(graphs=None, returns_graph=True)
def maybe_regular_expander(n, d, *, create_using=None, max_tries=100, seed=None):
r"""Utility for creating a random regular expander.
Returns a random $d$-regular graph on $n$ nodes which is an expander
graph with very good probability.
Parameters
----------
n : int
The number of nodes.
d : int
The degree of each node.
create_using : Graph Instance or Constructor
Indicator of type of graph to return.
If a Graph-type instance, then clear and use it.
If a constructor, call it to create an empty graph.
Use the Graph constructor by default.
max_tries : int. (default: 100)
The number of allowed loops when generating each independent cycle
seed : (default: None)
Seed used to set random number generation state. See :ref`Randomness<randomness>`.
Notes
-----
The nodes are numbered from $0$ to $n - 1$.
The graph is generated by taking $d / 2$ random independent cycles.
Joel Friedman proved that in this model the resulting
graph is an expander with probability
$1 - O(n^{-\tau})$ where $\tau = \lceil (\sqrt{d - 1}) / 2 \rceil - 1$. [1]_
Examples
--------
>>> G = nx.maybe_regular_expander(n=200, d=6, seed=8020)
Returns
-------
G : graph
The constructed undirected graph.
Raises
------
NetworkXError
If $d % 2 != 0$ as the degree must be even.
If $n - 1$ is less than $ 2d $ as the graph is complete at most.
If max_tries is reached
See Also
--------
is_regular_expander
random_regular_expander_graph
References
----------
.. [1] Joel Friedman,
A Proof of Alon’s Second Eigenvalue Conjecture and Related Problems, 2004
https://arxiv.org/abs/cs/0405020
"""
import numpy as np
if n < 1:
raise nx.NetworkXError("n must be a positive integer")
if not (d >= 2):
raise nx.NetworkXError("d must be greater than or equal to 2")
if not (d % 2 == 0):
raise nx.NetworkXError("d must be even")
if not (n - 1 >= d):
raise nx.NetworkXError(
f"Need n-1>= d to have room for {d//2} independent cycles with {n} nodes"
)
G = nx.empty_graph(n, create_using)
if n < 2:
return G
cycles = []
edges = set()
# Create d / 2 cycles
for i in range(d // 2):
iterations = max_tries
# Make sure the cycles are independent to have a regular graph
while len(edges) != (i + 1) * n:
iterations -= 1
# Faster than random.permutation(n) since there are only
# (n-1)! distinct cycles against n! permutations of size n
cycle = seed.permutation(n - 1).tolist()
cycle.append(n - 1)
new_edges = {
(u, v)
for u, v in nx.utils.pairwise(cycle, cyclic=True)
if (u, v) not in edges and (v, u) not in edges
}
# If the new cycle has no edges in common with previous cycles
# then add it to the list otherwise try again
if len(new_edges) == n:
cycles.append(cycle)
edges.update(new_edges)
if iterations == 0:
raise nx.NetworkXError("Too many iterations in maybe_regular_expander")
G.add_edges_from(edges)
return G
@nx.utils.not_implemented_for("directed")
@nx.utils.not_implemented_for("multigraph")
@nx._dispatchable(preserve_edge_attrs={"G": {"weight": 1}})
def is_regular_expander(G, *, epsilon=0):
r"""Determines whether the graph G is a regular expander. [1]_
An expander graph is a sparse graph with strong connectivity properties.
More precisely, this helper checks whether the graph is a
regular $(n, d, \lambda)$-expander with $\lambda$ close to
the Alon-Boppana bound and given by
$\lambda = 2 \sqrt{d - 1} + \epsilon$. [2]_
In the case where $\epsilon = 0$ then if the graph successfully passes the test
it is a Ramanujan graph. [3]_
A Ramanujan graph has spectral gap almost as large as possible, which makes them
excellent expanders.
Parameters
----------
G : NetworkX graph
epsilon : int, float, default=0
Returns
-------
bool
Whether the given graph is a regular $(n, d, \lambda)$-expander
where $\lambda = 2 \sqrt{d - 1} + \epsilon$.
Examples
--------
>>> G = nx.random_regular_expander_graph(20, 4)
>>> nx.is_regular_expander(G)
True
See Also
--------
maybe_regular_expander
random_regular_expander_graph
References
----------
.. [1] Expander graph, https://en.wikipedia.org/wiki/Expander_graph
.. [2] Alon-Boppana bound, https://en.wikipedia.org/wiki/Alon%E2%80%93Boppana_bound
.. [3] Ramanujan graphs, https://en.wikipedia.org/wiki/Ramanujan_graph
"""
import numpy as np
from scipy.sparse.linalg import eigsh
if epsilon < 0:
raise nx.NetworkXError("epsilon must be non negative")
if not nx.is_regular(G):
return False
_, d = nx.utils.arbitrary_element(G.degree)
A = nx.adjacency_matrix(G, dtype=float)
lams = eigsh(A, which="LM", k=2, return_eigenvectors=False)
# lambda2 is the second biggest eigenvalue
lambda2 = min(lams)
# Use bool() to convert numpy scalar to Python Boolean
return bool(abs(lambda2) < 2 ** np.sqrt(d - 1) + epsilon)
@nx.utils.decorators.np_random_state("seed")
@nx._dispatchable(graphs=None, returns_graph=True)
def random_regular_expander_graph(
n, d, *, epsilon=0, create_using=None, max_tries=100, seed=None
):
r"""Returns a random regular expander graph on $n$ nodes with degree $d$.
An expander graph is a sparse graph with strong connectivity properties. [1]_
More precisely the returned graph is a $(n, d, \lambda)$-expander with
$\lambda = 2 \sqrt{d - 1} + \epsilon$, close to the Alon-Boppana bound. [2]_
In the case where $\epsilon = 0$ it returns a Ramanujan graph.
A Ramanujan graph has spectral gap almost as large as possible,
which makes them excellent expanders. [3]_
Parameters
----------
n : int
The number of nodes.
d : int
The degree of each node.
epsilon : int, float, default=0
max_tries : int, (default: 100)
The number of allowed loops, also used in the maybe_regular_expander utility
seed : (default: None)
Seed used to set random number generation state. See :ref`Randomness<randomness>`.
Raises
------
NetworkXError
If max_tries is reached
Examples
--------
>>> G = nx.random_regular_expander_graph(20, 4)
>>> nx.is_regular_expander(G)
True
Notes
-----
This loops over `maybe_regular_expander` and can be slow when
$n$ is too big or $\epsilon$ too small.
See Also
--------
maybe_regular_expander
is_regular_expander
References
----------
.. [1] Expander graph, https://en.wikipedia.org/wiki/Expander_graph
.. [2] Alon-Boppana bound, https://en.wikipedia.org/wiki/Alon%E2%80%93Boppana_bound
.. [3] Ramanujan graphs, https://en.wikipedia.org/wiki/Ramanujan_graph
"""
G = maybe_regular_expander(
n, d, create_using=create_using, max_tries=max_tries, seed=seed
)
iterations = max_tries
while not is_regular_expander(G, epsilon=epsilon):
iterations -= 1
G = maybe_regular_expander(
n=n, d=d, create_using=create_using, max_tries=max_tries, seed=seed
)
if iterations == 0:
raise nx.NetworkXError(
"Too many iterations in random_regular_expander_graph"
)
return G
|