File size: 27,077 Bytes
d1ceb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
from sympy.integrals.transforms import (
    mellin_transform, inverse_mellin_transform,
    fourier_transform, inverse_fourier_transform,
    sine_transform, inverse_sine_transform,
    cosine_transform, inverse_cosine_transform,
    hankel_transform, inverse_hankel_transform,
    FourierTransform, SineTransform, CosineTransform, InverseFourierTransform,
    InverseSineTransform, InverseCosineTransform, IntegralTransformError)
from sympy.integrals.laplace import (
    laplace_transform, inverse_laplace_transform)
from sympy.core.function import Function, expand_mul
from sympy.core import EulerGamma
from sympy.core.numbers import I, Rational, oo, pi
from sympy.core.singleton import S
from sympy.core.symbol import Symbol, symbols
from sympy.functions.combinatorial.factorials import factorial
from sympy.functions.elementary.complexes import re, unpolarify
from sympy.functions.elementary.exponential import exp, exp_polar, log
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import atan, cos, sin, tan
from sympy.functions.special.bessel import besseli, besselj, besselk, bessely
from sympy.functions.special.delta_functions import Heaviside
from sympy.functions.special.error_functions import erf, expint
from sympy.functions.special.gamma_functions import gamma
from sympy.functions.special.hyper import meijerg
from sympy.simplify.gammasimp import gammasimp
from sympy.simplify.hyperexpand import hyperexpand
from sympy.simplify.trigsimp import trigsimp
from sympy.testing.pytest import XFAIL, slow, skip, raises
from sympy.abc import x, s, a, b, c, d


nu, beta, rho = symbols('nu beta rho')


def test_undefined_function():
    from sympy.integrals.transforms import MellinTransform
    f = Function('f')
    assert mellin_transform(f(x), x, s) == MellinTransform(f(x), x, s)
    assert mellin_transform(f(x) + exp(-x), x, s) == \
        (MellinTransform(f(x), x, s) + gamma(s + 1)/s, (0, oo), True)


def test_free_symbols():
    f = Function('f')
    assert mellin_transform(f(x), x, s).free_symbols == {s}
    assert mellin_transform(f(x)*a, x, s).free_symbols == {s, a}


def test_as_integral():
    from sympy.integrals.integrals import Integral
    f = Function('f')
    assert mellin_transform(f(x), x, s).rewrite('Integral') == \
        Integral(x**(s - 1)*f(x), (x, 0, oo))
    assert fourier_transform(f(x), x, s).rewrite('Integral') == \
        Integral(f(x)*exp(-2*I*pi*s*x), (x, -oo, oo))
    assert laplace_transform(f(x), x, s, noconds=True).rewrite('Integral') == \
        Integral(f(x)*exp(-s*x), (x, 0, oo))
    assert str(2*pi*I*inverse_mellin_transform(f(s), s, x, (a, b)).rewrite('Integral')) \
        == "Integral(f(s)/x**s, (s, _c - oo*I, _c + oo*I))"
    assert str(2*pi*I*inverse_laplace_transform(f(s), s, x).rewrite('Integral')) == \
        "Integral(f(s)*exp(s*x), (s, _c - oo*I, _c + oo*I))"
    assert inverse_fourier_transform(f(s), s, x).rewrite('Integral') == \
        Integral(f(s)*exp(2*I*pi*s*x), (s, -oo, oo))

# NOTE this is stuck in risch because meijerint cannot handle it


@slow
@XFAIL
def test_mellin_transform_fail():
    skip("Risch takes forever.")

    MT = mellin_transform

    bpos = symbols('b', positive=True)
    # bneg = symbols('b', negative=True)

    expr = (sqrt(x + b**2) + b)**a/sqrt(x + b**2)
    # TODO does not work with bneg, argument wrong. Needs changes to matching.
    assert MT(expr.subs(b, -bpos), x, s) == \
        ((-1)**(a + 1)*2**(a + 2*s)*bpos**(a + 2*s - 1)*gamma(a + s)
         *gamma(1 - a - 2*s)/gamma(1 - s),
            (-re(a), -re(a)/2 + S.Half), True)

    expr = (sqrt(x + b**2) + b)**a
    assert MT(expr.subs(b, -bpos), x, s) == \
        (
            2**(a + 2*s)*a*bpos**(a + 2*s)*gamma(-a - 2*
                   s)*gamma(a + s)/gamma(-s + 1),
            (-re(a), -re(a)/2), True)

    # Test exponent 1:
    assert MT(expr.subs({b: -bpos, a: 1}), x, s) == \
        (-bpos**(2*s + 1)*gamma(s)*gamma(-s - S.Half)/(2*sqrt(pi)),
            (-1, Rational(-1, 2)), True)


def test_mellin_transform():
    from sympy.functions.elementary.miscellaneous import (Max, Min)
    MT = mellin_transform

    bpos = symbols('b', positive=True)

    # 8.4.2
    assert MT(x**nu*Heaviside(x - 1), x, s) == \
        (-1/(nu + s), (-oo, -re(nu)), True)
    assert MT(x**nu*Heaviside(1 - x), x, s) == \
        (1/(nu + s), (-re(nu), oo), True)

    assert MT((1 - x)**(beta - 1)*Heaviside(1 - x), x, s) == \
        (gamma(beta)*gamma(s)/gamma(beta + s), (0, oo), re(beta) > 0)
    assert MT((x - 1)**(beta - 1)*Heaviside(x - 1), x, s) == \
        (gamma(beta)*gamma(1 - beta - s)/gamma(1 - s),
            (-oo, 1 - re(beta)), re(beta) > 0)

    assert MT((1 + x)**(-rho), x, s) == \
        (gamma(s)*gamma(rho - s)/gamma(rho), (0, re(rho)), True)

    assert MT(abs(1 - x)**(-rho), x, s) == (
        2*sin(pi*rho/2)*gamma(1 - rho)*
        cos(pi*(s - rho/2))*gamma(s)*gamma(rho-s)/pi,
        (0, re(rho)), re(rho) < 1)
    mt = MT((1 - x)**(beta - 1)*Heaviside(1 - x)
            + a*(x - 1)**(beta - 1)*Heaviside(x - 1), x, s)
    assert mt[1], mt[2] == ((0, -re(beta) + 1), re(beta) > 0)

    assert MT((x**a - b**a)/(x - b), x, s)[0] == \
        pi*b**(a + s - 1)*sin(pi*a)/(sin(pi*s)*sin(pi*(a + s)))
    assert MT((x**a - bpos**a)/(x - bpos), x, s) == \
        (pi*bpos**(a + s - 1)*sin(pi*a)/(sin(pi*s)*sin(pi*(a + s))),
            (Max(0, -re(a)), Min(1, 1 - re(a))), True)

    expr = (sqrt(x + b**2) + b)**a
    assert MT(expr.subs(b, bpos), x, s) == \
        (-a*(2*bpos)**(a + 2*s)*gamma(s)*gamma(-a - 2*s)/gamma(-a - s + 1),
            (0, -re(a)/2), True)

    expr = (sqrt(x + b**2) + b)**a/sqrt(x + b**2)
    assert MT(expr.subs(b, bpos), x, s) == \
        (2**(a + 2*s)*bpos**(a + 2*s - 1)*gamma(s)
                                         *gamma(1 - a - 2*s)/gamma(1 - a - s),
            (0, -re(a)/2 + S.Half), True)

    # 8.4.2
    assert MT(exp(-x), x, s) == (gamma(s), (0, oo), True)
    assert MT(exp(-1/x), x, s) == (gamma(-s), (-oo, 0), True)

    # 8.4.5
    assert MT(log(x)**4*Heaviside(1 - x), x, s) == (24/s**5, (0, oo), True)
    assert MT(log(x)**3*Heaviside(x - 1), x, s) == (6/s**4, (-oo, 0), True)
    assert MT(log(x + 1), x, s) == (pi/(s*sin(pi*s)), (-1, 0), True)
    assert MT(log(1/x + 1), x, s) == (pi/(s*sin(pi*s)), (0, 1), True)
    assert MT(log(abs(1 - x)), x, s) == (pi/(s*tan(pi*s)), (-1, 0), True)
    assert MT(log(abs(1 - 1/x)), x, s) == (pi/(s*tan(pi*s)), (0, 1), True)

    # 8.4.14
    assert MT(erf(sqrt(x)), x, s) == \
        (-gamma(s + S.Half)/(sqrt(pi)*s), (Rational(-1, 2), 0), True)


def test_mellin_transform2():
    MT = mellin_transform
    # TODO we cannot currently do these (needs summation of 3F2(-1))
    #      this also implies that they cannot be written as a single g-function
    #      (although this is possible)
    mt = MT(log(x)/(x + 1), x, s)
    assert mt[1:] == ((0, 1), True)
    assert not hyperexpand(mt[0], allow_hyper=True).has(meijerg)
    mt = MT(log(x)**2/(x + 1), x, s)
    assert mt[1:] == ((0, 1), True)
    assert not hyperexpand(mt[0], allow_hyper=True).has(meijerg)
    mt = MT(log(x)/(x + 1)**2, x, s)
    assert mt[1:] == ((0, 2), True)
    assert not hyperexpand(mt[0], allow_hyper=True).has(meijerg)


@slow
def test_mellin_transform_bessel():
    from sympy.functions.elementary.miscellaneous import Max
    MT = mellin_transform

    # 8.4.19
    assert MT(besselj(a, 2*sqrt(x)), x, s) == \
        (gamma(a/2 + s)/gamma(a/2 - s + 1), (-re(a)/2, Rational(3, 4)), True)
    assert MT(sin(sqrt(x))*besselj(a, sqrt(x)), x, s) == \
        (2**a*gamma(-2*s + S.Half)*gamma(a/2 + s + S.Half)/(
        gamma(-a/2 - s + 1)*gamma(a - 2*s + 1)), (
        -re(a)/2 - S.Half, Rational(1, 4)), True)
    assert MT(cos(sqrt(x))*besselj(a, sqrt(x)), x, s) == \
        (2**a*gamma(a/2 + s)*gamma(-2*s + S.Half)/(
        gamma(-a/2 - s + S.Half)*gamma(a - 2*s + 1)), (
        -re(a)/2, Rational(1, 4)), True)
    assert MT(besselj(a, sqrt(x))**2, x, s) == \
        (gamma(a + s)*gamma(S.Half - s)
         / (sqrt(pi)*gamma(1 - s)*gamma(1 + a - s)),
            (-re(a), S.Half), True)
    assert MT(besselj(a, sqrt(x))*besselj(-a, sqrt(x)), x, s) == \
        (gamma(s)*gamma(S.Half - s)
         / (sqrt(pi)*gamma(1 - a - s)*gamma(1 + a - s)),
            (0, S.Half), True)
    # NOTE: prudnikov gives the strip below as (1/2 - re(a), 1). As far as
    #       I can see this is wrong (since besselj(z) ~ 1/sqrt(z) for z large)
    assert MT(besselj(a - 1, sqrt(x))*besselj(a, sqrt(x)), x, s) == \
        (gamma(1 - s)*gamma(a + s - S.Half)
         / (sqrt(pi)*gamma(Rational(3, 2) - s)*gamma(a - s + S.Half)),
            (S.Half - re(a), S.Half), True)
    assert MT(besselj(a, sqrt(x))*besselj(b, sqrt(x)), x, s) == \
        (4**s*gamma(1 - 2*s)*gamma((a + b)/2 + s)
         / (gamma(1 - s + (b - a)/2)*gamma(1 - s + (a - b)/2)
            *gamma( 1 - s + (a + b)/2)),
            (-(re(a) + re(b))/2, S.Half), True)
    assert MT(besselj(a, sqrt(x))**2 + besselj(-a, sqrt(x))**2, x, s)[1:] == \
        ((Max(re(a), -re(a)), S.Half), True)

    # Section 8.4.20
    assert MT(bessely(a, 2*sqrt(x)), x, s) == \
        (-cos(pi*(a/2 - s))*gamma(s - a/2)*gamma(s + a/2)/pi,
            (Max(-re(a)/2, re(a)/2), Rational(3, 4)), True)
    assert MT(sin(sqrt(x))*bessely(a, sqrt(x)), x, s) == \
        (-4**s*sin(pi*(a/2 - s))*gamma(S.Half - 2*s)
         * gamma((1 - a)/2 + s)*gamma((1 + a)/2 + s)
         / (sqrt(pi)*gamma(1 - s - a/2)*gamma(1 - s + a/2)),
            (Max(-(re(a) + 1)/2, (re(a) - 1)/2), Rational(1, 4)), True)
    assert MT(cos(sqrt(x))*bessely(a, sqrt(x)), x, s) == \
        (-4**s*cos(pi*(a/2 - s))*gamma(s - a/2)*gamma(s + a/2)*gamma(S.Half - 2*s)
         / (sqrt(pi)*gamma(S.Half - s - a/2)*gamma(S.Half - s + a/2)),
            (Max(-re(a)/2, re(a)/2), Rational(1, 4)), True)
    assert MT(besselj(a, sqrt(x))*bessely(a, sqrt(x)), x, s) == \
        (-cos(pi*s)*gamma(s)*gamma(a + s)*gamma(S.Half - s)
         / (pi**S('3/2')*gamma(1 + a - s)),
            (Max(-re(a), 0), S.Half), True)
    assert MT(besselj(a, sqrt(x))*bessely(b, sqrt(x)), x, s) == \
        (-4**s*cos(pi*(a/2 - b/2 + s))*gamma(1 - 2*s)
         * gamma(a/2 - b/2 + s)*gamma(a/2 + b/2 + s)
         / (pi*gamma(a/2 - b/2 - s + 1)*gamma(a/2 + b/2 - s + 1)),
            (Max((-re(a) + re(b))/2, (-re(a) - re(b))/2), S.Half), True)
    # NOTE bessely(a, sqrt(x))**2 and bessely(a, sqrt(x))*bessely(b, sqrt(x))
    # are a mess (no matter what way you look at it ...)
    assert MT(bessely(a, sqrt(x))**2, x, s)[1:] == \
             ((Max(-re(a), 0, re(a)), S.Half), True)

    # Section 8.4.22
    # TODO we can't do any of these (delicate cancellation)

    # Section 8.4.23
    assert MT(besselk(a, 2*sqrt(x)), x, s) == \
        (gamma(
         s - a/2)*gamma(s + a/2)/2, (Max(-re(a)/2, re(a)/2), oo), True)
    assert MT(besselj(a, 2*sqrt(2*sqrt(x)))*besselk(
        a, 2*sqrt(2*sqrt(x))), x, s) == (4**(-s)*gamma(2*s)*
        gamma(a/2 + s)/(2*gamma(a/2 - s + 1)), (Max(0, -re(a)/2), oo), True)
    # TODO bessely(a, x)*besselk(a, x) is a mess
    assert MT(besseli(a, sqrt(x))*besselk(a, sqrt(x)), x, s) == \
        (gamma(s)*gamma(
        a + s)*gamma(-s + S.Half)/(2*sqrt(pi)*gamma(a - s + 1)),
        (Max(-re(a), 0), S.Half), True)
    assert MT(besseli(b, sqrt(x))*besselk(a, sqrt(x)), x, s) == \
        (2**(2*s - 1)*gamma(-2*s + 1)*gamma(-a/2 + b/2 + s)* \
        gamma(a/2 + b/2 + s)/(gamma(-a/2 + b/2 - s + 1)* \
        gamma(a/2 + b/2 - s + 1)), (Max(-re(a)/2 - re(b)/2, \
        re(a)/2 - re(b)/2), S.Half), True)

    # TODO products of besselk are a mess

    mt = MT(exp(-x/2)*besselk(a, x/2), x, s)
    mt0 = gammasimp(trigsimp(gammasimp(mt[0].expand(func=True))))
    assert mt0 == 2*pi**Rational(3, 2)*cos(pi*s)*gamma(S.Half - s)/(
        (cos(2*pi*a) - cos(2*pi*s))*gamma(-a - s + 1)*gamma(a - s + 1))
    assert mt[1:] == ((Max(-re(a), re(a)), oo), True)
    # TODO exp(x/2)*besselk(a, x/2) [etc] cannot currently be done
    # TODO various strange products of special orders


@slow
def test_expint():
    from sympy.functions.elementary.miscellaneous import Max
    from sympy.functions.special.error_functions import Ci, E1, Si
    from sympy.simplify.simplify import simplify

    aneg = Symbol('a', negative=True)
    u = Symbol('u', polar=True)

    assert mellin_transform(E1(x), x, s) == (gamma(s)/s, (0, oo), True)
    assert inverse_mellin_transform(gamma(s)/s, s, x,
              (0, oo)).rewrite(expint).expand() == E1(x)
    assert mellin_transform(expint(a, x), x, s) == \
        (gamma(s)/(a + s - 1), (Max(1 - re(a), 0), oo), True)
    # XXX IMT has hickups with complicated strips ...
    assert simplify(unpolarify(
                    inverse_mellin_transform(gamma(s)/(aneg + s - 1), s, x,
                  (1 - aneg, oo)).rewrite(expint).expand(func=True))) == \
        expint(aneg, x)

    assert mellin_transform(Si(x), x, s) == \
        (-2**s*sqrt(pi)*gamma(s/2 + S.Half)/(
        2*s*gamma(-s/2 + 1)), (-1, 0), True)
    assert inverse_mellin_transform(-2**s*sqrt(pi)*gamma((s + 1)/2)
                                    /(2*s*gamma(-s/2 + 1)), s, x, (-1, 0)) \
        == Si(x)

    assert mellin_transform(Ci(sqrt(x)), x, s) == \
        (-2**(2*s - 1)*sqrt(pi)*gamma(s)/(s*gamma(-s + S.Half)), (0, 1), True)
    assert inverse_mellin_transform(
        -4**s*sqrt(pi)*gamma(s)/(2*s*gamma(-s + S.Half)),
        s, u, (0, 1)).expand() == Ci(sqrt(u))


@slow
def test_inverse_mellin_transform():
    from sympy.core.function import expand
    from sympy.functions.elementary.miscellaneous import (Max, Min)
    from sympy.functions.elementary.trigonometric import cot
    from sympy.simplify.powsimp import powsimp
    from sympy.simplify.simplify import simplify
    IMT = inverse_mellin_transform

    assert IMT(gamma(s), s, x, (0, oo)) == exp(-x)
    assert IMT(gamma(-s), s, x, (-oo, 0)) == exp(-1/x)
    assert simplify(IMT(s/(2*s**2 - 2), s, x, (2, oo))) == \
        (x**2 + 1)*Heaviside(1 - x)/(4*x)

    # test passing "None"
    assert IMT(1/(s**2 - 1), s, x, (-1, None)) == \
        -x*Heaviside(-x + 1)/2 - Heaviside(x - 1)/(2*x)
    assert IMT(1/(s**2 - 1), s, x, (None, 1)) == \
        -x*Heaviside(-x + 1)/2 - Heaviside(x - 1)/(2*x)

    # test expansion of sums
    assert IMT(gamma(s) + gamma(s - 1), s, x, (1, oo)) == (x + 1)*exp(-x)/x

    # test factorisation of polys
    r = symbols('r', real=True)
    assert IMT(1/(s**2 + 1), s, exp(-x), (None, oo)
              ).subs(x, r).rewrite(sin).simplify() \
        == sin(r)*Heaviside(1 - exp(-r))

    # test multiplicative substitution
    _a, _b = symbols('a b', positive=True)
    assert IMT(_b**(-s/_a)*factorial(s/_a)/s, s, x, (0, oo)) == exp(-_b*x**_a)
    assert IMT(factorial(_a/_b + s/_b)/(_a + s), s, x, (-_a, oo)) == x**_a*exp(-x**_b)

    def simp_pows(expr):
        return simplify(powsimp(expand_mul(expr, deep=False), force=True)).replace(exp_polar, exp)

    # Now test the inverses of all direct transforms tested above

    # Section 8.4.2
    nu = symbols('nu', real=True)
    assert IMT(-1/(nu + s), s, x, (-oo, None)) == x**nu*Heaviside(x - 1)
    assert IMT(1/(nu + s), s, x, (None, oo)) == x**nu*Heaviside(1 - x)
    assert simp_pows(IMT(gamma(beta)*gamma(s)/gamma(s + beta), s, x, (0, oo))) \
        == (1 - x)**(beta - 1)*Heaviside(1 - x)
    assert simp_pows(IMT(gamma(beta)*gamma(1 - beta - s)/gamma(1 - s),
                         s, x, (-oo, None))) \
        == (x - 1)**(beta - 1)*Heaviside(x - 1)
    assert simp_pows(IMT(gamma(s)*gamma(rho - s)/gamma(rho), s, x, (0, None))) \
        == (1/(x + 1))**rho
    assert simp_pows(IMT(d**c*d**(s - 1)*sin(pi*c)
                         *gamma(s)*gamma(s + c)*gamma(1 - s)*gamma(1 - s - c)/pi,
                         s, x, (Max(-re(c), 0), Min(1 - re(c), 1)))) \
        == (x**c - d**c)/(x - d)

    assert simplify(IMT(1/sqrt(pi)*(-c/2)*gamma(s)*gamma((1 - c)/2 - s)
                        *gamma(-c/2 - s)/gamma(1 - c - s),
                        s, x, (0, -re(c)/2))) == \
        (1 + sqrt(x + 1))**c
    assert simplify(IMT(2**(a + 2*s)*b**(a + 2*s - 1)*gamma(s)*gamma(1 - a - 2*s)
                        /gamma(1 - a - s), s, x, (0, (-re(a) + 1)/2))) == \
        b**(a - 1)*(b**2*(sqrt(1 + x/b**2) + 1)**a + x*(sqrt(1 + x/b**2) + 1
        )**(a - 1))/(b**2 + x)
    assert simplify(IMT(-2**(c + 2*s)*c*b**(c + 2*s)*gamma(s)*gamma(-c - 2*s)
                        / gamma(-c - s + 1), s, x, (0, -re(c)/2))) == \
        b**c*(sqrt(1 + x/b**2) + 1)**c

    # Section 8.4.5
    assert IMT(24/s**5, s, x, (0, oo)) == log(x)**4*Heaviside(1 - x)
    assert expand(IMT(6/s**4, s, x, (-oo, 0)), force=True) == \
        log(x)**3*Heaviside(x - 1)
    assert IMT(pi/(s*sin(pi*s)), s, x, (-1, 0)) == log(x + 1)
    assert IMT(pi/(s*sin(pi*s/2)), s, x, (-2, 0)) == log(x**2 + 1)
    assert IMT(pi/(s*sin(2*pi*s)), s, x, (Rational(-1, 2), 0)) == log(sqrt(x) + 1)
    assert IMT(pi/(s*sin(pi*s)), s, x, (0, 1)) == log(1 + 1/x)

    # TODO
    def mysimp(expr):
        from sympy.core.function import expand
        from sympy.simplify.powsimp import powsimp
        from sympy.simplify.simplify import logcombine
        return expand(
            powsimp(logcombine(expr, force=True), force=True, deep=True),
            force=True).replace(exp_polar, exp)

    assert mysimp(mysimp(IMT(pi/(s*tan(pi*s)), s, x, (-1, 0)))) in [
        log(1 - x)*Heaviside(1 - x) + log(x - 1)*Heaviside(x - 1),
        log(x)*Heaviside(x - 1) + log(1 - 1/x)*Heaviside(x - 1) + log(-x +
        1)*Heaviside(-x + 1)]
    # test passing cot
    assert mysimp(IMT(pi*cot(pi*s)/s, s, x, (0, 1))) in [
        log(1/x - 1)*Heaviside(1 - x) + log(1 - 1/x)*Heaviside(x - 1),
        -log(x)*Heaviside(-x + 1) + log(1 - 1/x)*Heaviside(x - 1) + log(-x +
        1)*Heaviside(-x + 1), ]

    # 8.4.14
    assert IMT(-gamma(s + S.Half)/(sqrt(pi)*s), s, x, (Rational(-1, 2), 0)) == \
        erf(sqrt(x))

    # 8.4.19
    assert simplify(IMT(gamma(a/2 + s)/gamma(a/2 - s + 1), s, x, (-re(a)/2, Rational(3, 4)))) \
        == besselj(a, 2*sqrt(x))
    assert simplify(IMT(2**a*gamma(S.Half - 2*s)*gamma(s + (a + 1)/2)
                      / (gamma(1 - s - a/2)*gamma(1 - 2*s + a)),
                      s, x, (-(re(a) + 1)/2, Rational(1, 4)))) == \
        sin(sqrt(x))*besselj(a, sqrt(x))
    assert simplify(IMT(2**a*gamma(a/2 + s)*gamma(S.Half - 2*s)
                      / (gamma(S.Half - s - a/2)*gamma(1 - 2*s + a)),
                      s, x, (-re(a)/2, Rational(1, 4)))) == \
        cos(sqrt(x))*besselj(a, sqrt(x))
    # TODO this comes out as an amazing mess, but simplifies nicely
    assert simplify(IMT(gamma(a + s)*gamma(S.Half - s)
                      / (sqrt(pi)*gamma(1 - s)*gamma(1 + a - s)),
                      s, x, (-re(a), S.Half))) == \
        besselj(a, sqrt(x))**2
    assert simplify(IMT(gamma(s)*gamma(S.Half - s)
                      / (sqrt(pi)*gamma(1 - s - a)*gamma(1 + a - s)),
                      s, x, (0, S.Half))) == \
        besselj(-a, sqrt(x))*besselj(a, sqrt(x))
    assert simplify(IMT(4**s*gamma(-2*s + 1)*gamma(a/2 + b/2 + s)
                      / (gamma(-a/2 + b/2 - s + 1)*gamma(a/2 - b/2 - s + 1)
                         *gamma(a/2 + b/2 - s + 1)),
                      s, x, (-(re(a) + re(b))/2, S.Half))) == \
        besselj(a, sqrt(x))*besselj(b, sqrt(x))

    # Section 8.4.20
    # TODO this can be further simplified!
    assert simplify(IMT(-2**(2*s)*cos(pi*a/2 - pi*b/2 + pi*s)*gamma(-2*s + 1) *
                    gamma(a/2 - b/2 + s)*gamma(a/2 + b/2 + s) /
                    (pi*gamma(a/2 - b/2 - s + 1)*gamma(a/2 + b/2 - s + 1)),
                    s, x,
                    (Max(-re(a)/2 - re(b)/2, -re(a)/2 + re(b)/2), S.Half))) == \
                    besselj(a, sqrt(x))*-(besselj(-b, sqrt(x)) -
                    besselj(b, sqrt(x))*cos(pi*b))/sin(pi*b)
    # TODO more

    # for coverage

    assert IMT(pi/cos(pi*s), s, x, (0, S.Half)) == sqrt(x)/(x + 1)


def test_fourier_transform():
    from sympy.core.function import (expand, expand_complex, expand_trig)
    from sympy.polys.polytools import factor
    from sympy.simplify.simplify import simplify
    FT = fourier_transform
    IFT = inverse_fourier_transform

    def simp(x):
        return simplify(expand_trig(expand_complex(expand(x))))

    def sinc(x):
        return sin(pi*x)/(pi*x)
    k = symbols('k', real=True)
    f = Function("f")

    # TODO for this to work with real a, need to expand abs(a*x) to abs(a)*abs(x)
    a = symbols('a', positive=True)
    b = symbols('b', positive=True)

    posk = symbols('posk', positive=True)

    # Test unevaluated form
    assert fourier_transform(f(x), x, k) == FourierTransform(f(x), x, k)
    assert inverse_fourier_transform(
        f(k), k, x) == InverseFourierTransform(f(k), k, x)

    # basic examples from wikipedia
    assert simp(FT(Heaviside(1 - abs(2*a*x)), x, k)) == sinc(k/a)/a
    # TODO IFT is a *mess*
    assert simp(FT(Heaviside(1 - abs(a*x))*(1 - abs(a*x)), x, k)) == sinc(k/a)**2/a
    # TODO IFT

    assert factor(FT(exp(-a*x)*Heaviside(x), x, k), extension=I) == \
        1/(a + 2*pi*I*k)
    # NOTE: the ift comes out in pieces
    assert IFT(1/(a + 2*pi*I*x), x, posk,
            noconds=False) == (exp(-a*posk), True)
    assert IFT(1/(a + 2*pi*I*x), x, -posk,
            noconds=False) == (0, True)
    assert IFT(1/(a + 2*pi*I*x), x, symbols('k', negative=True),
            noconds=False) == (0, True)
    # TODO IFT without factoring comes out as meijer g

    assert factor(FT(x*exp(-a*x)*Heaviside(x), x, k), extension=I) == \
        1/(a + 2*pi*I*k)**2
    assert FT(exp(-a*x)*sin(b*x)*Heaviside(x), x, k) == \
        b/(b**2 + (a + 2*I*pi*k)**2)

    assert FT(exp(-a*x**2), x, k) == sqrt(pi)*exp(-pi**2*k**2/a)/sqrt(a)
    assert IFT(sqrt(pi/a)*exp(-(pi*k)**2/a), k, x) == exp(-a*x**2)
    assert FT(exp(-a*abs(x)), x, k) == 2*a/(a**2 + 4*pi**2*k**2)
    # TODO IFT (comes out as meijer G)

    # TODO besselj(n, x), n an integer > 0 actually can be done...

    # TODO are there other common transforms (no distributions!)?


def test_sine_transform():
    t = symbols("t")
    w = symbols("w")
    a = symbols("a")
    f = Function("f")

    # Test unevaluated form
    assert sine_transform(f(t), t, w) == SineTransform(f(t), t, w)
    assert inverse_sine_transform(
        f(w), w, t) == InverseSineTransform(f(w), w, t)

    assert sine_transform(1/sqrt(t), t, w) == 1/sqrt(w)
    assert inverse_sine_transform(1/sqrt(w), w, t) == 1/sqrt(t)

    assert sine_transform((1/sqrt(t))**3, t, w) == 2*sqrt(w)

    assert sine_transform(t**(-a), t, w) == 2**(
        -a + S.Half)*w**(a - 1)*gamma(-a/2 + 1)/gamma((a + 1)/2)
    assert inverse_sine_transform(2**(-a + S(
        1)/2)*w**(a - 1)*gamma(-a/2 + 1)/gamma(a/2 + S.Half), w, t) == t**(-a)

    assert sine_transform(
        exp(-a*t), t, w) == sqrt(2)*w/(sqrt(pi)*(a**2 + w**2))
    assert inverse_sine_transform(
        sqrt(2)*w/(sqrt(pi)*(a**2 + w**2)), w, t) == exp(-a*t)

    assert sine_transform(
        log(t)/t, t, w) == sqrt(2)*sqrt(pi)*-(log(w**2) + 2*EulerGamma)/4

    assert sine_transform(
        t*exp(-a*t**2), t, w) == sqrt(2)*w*exp(-w**2/(4*a))/(4*a**Rational(3, 2))
    assert inverse_sine_transform(
        sqrt(2)*w*exp(-w**2/(4*a))/(4*a**Rational(3, 2)), w, t) == t*exp(-a*t**2)


def test_cosine_transform():
    from sympy.functions.special.error_functions import (Ci, Si)

    t = symbols("t")
    w = symbols("w")
    a = symbols("a")
    f = Function("f")

    # Test unevaluated form
    assert cosine_transform(f(t), t, w) == CosineTransform(f(t), t, w)
    assert inverse_cosine_transform(
        f(w), w, t) == InverseCosineTransform(f(w), w, t)

    assert cosine_transform(1/sqrt(t), t, w) == 1/sqrt(w)
    assert inverse_cosine_transform(1/sqrt(w), w, t) == 1/sqrt(t)

    assert cosine_transform(1/(
        a**2 + t**2), t, w) == sqrt(2)*sqrt(pi)*exp(-a*w)/(2*a)

    assert cosine_transform(t**(
        -a), t, w) == 2**(-a + S.Half)*w**(a - 1)*gamma((-a + 1)/2)/gamma(a/2)
    assert inverse_cosine_transform(2**(-a + S(
        1)/2)*w**(a - 1)*gamma(-a/2 + S.Half)/gamma(a/2), w, t) == t**(-a)

    assert cosine_transform(
        exp(-a*t), t, w) == sqrt(2)*a/(sqrt(pi)*(a**2 + w**2))
    assert inverse_cosine_transform(
        sqrt(2)*a/(sqrt(pi)*(a**2 + w**2)), w, t) == exp(-a*t)

    assert cosine_transform(exp(-a*sqrt(t))*cos(a*sqrt(
        t)), t, w) == a*exp(-a**2/(2*w))/(2*w**Rational(3, 2))

    assert cosine_transform(1/(a + t), t, w) == sqrt(2)*(
        (-2*Si(a*w) + pi)*sin(a*w)/2 - cos(a*w)*Ci(a*w))/sqrt(pi)
    assert inverse_cosine_transform(sqrt(2)*meijerg(((S.Half, 0), ()), (
        (S.Half, 0, 0), (S.Half,)), a**2*w**2/4)/(2*pi), w, t) == 1/(a + t)

    assert cosine_transform(1/sqrt(a**2 + t**2), t, w) == sqrt(2)*meijerg(
        ((S.Half,), ()), ((0, 0), (S.Half,)), a**2*w**2/4)/(2*sqrt(pi))
    assert inverse_cosine_transform(sqrt(2)*meijerg(((S.Half,), ()), ((0, 0), (S.Half,)), a**2*w**2/4)/(2*sqrt(pi)), w, t) == 1/(t*sqrt(a**2/t**2 + 1))


def test_hankel_transform():
    r = Symbol("r")
    k = Symbol("k")
    nu = Symbol("nu")
    m = Symbol("m")
    a = symbols("a")

    assert hankel_transform(1/r, r, k, 0) == 1/k
    assert inverse_hankel_transform(1/k, k, r, 0) == 1/r

    assert hankel_transform(
        1/r**m, r, k, 0) == 2**(-m + 1)*k**(m - 2)*gamma(-m/2 + 1)/gamma(m/2)
    assert inverse_hankel_transform(
        2**(-m + 1)*k**(m - 2)*gamma(-m/2 + 1)/gamma(m/2), k, r, 0) == r**(-m)

    assert hankel_transform(1/r**m, r, k, nu) == (
        2*2**(-m)*k**(m - 2)*gamma(-m/2 + nu/2 + 1)/gamma(m/2 + nu/2))
    assert inverse_hankel_transform(2**(-m + 1)*k**(
        m - 2)*gamma(-m/2 + nu/2 + 1)/gamma(m/2 + nu/2), k, r, nu) == r**(-m)

    assert hankel_transform(r**nu*exp(-a*r), r, k, nu) == \
        2**(nu + 1)*a*k**(-nu - 3)*(a**2/k**2 + 1)**(-nu - S(
                                                     3)/2)*gamma(nu + Rational(3, 2))/sqrt(pi)
    assert inverse_hankel_transform(
        2**(nu + 1)*a*k**(-nu - 3)*(a**2/k**2 + 1)**(-nu - Rational(3, 2))*gamma(
        nu + Rational(3, 2))/sqrt(pi), k, r, nu) == r**nu*exp(-a*r)


def test_issue_7181():
    assert mellin_transform(1/(1 - x), x, s) != None


def test_issue_8882():
    # This is the original test.
    # from sympy import diff, Integral, integrate
    # r = Symbol('r')
    # psi = 1/r*sin(r)*exp(-(a0*r))
    # h = -1/2*diff(psi, r, r) - 1/r*psi
    # f = 4*pi*psi*h*r**2
    # assert integrate(f, (r, -oo, 3), meijerg=True).has(Integral) == True

    # To save time, only the critical part is included.
    F = -a**(-s + 1)*(4 + 1/a**2)**(-s/2)*sqrt(1/a**2)*exp(-s*I*pi)* \
        sin(s*atan(sqrt(1/a**2)/2))*gamma(s)
    raises(IntegralTransformError, lambda:
        inverse_mellin_transform(F, s, x, (-1, oo),
        **{'as_meijerg': True, 'needeval': True}))


def test_issue_12591():
    x, y = symbols("x y", real=True)
    assert fourier_transform(exp(x), x, y) == FourierTransform(exp(x), x, y)