File size: 7,308 Bytes
d1ceb73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.simplify.powsimp import powsimp
from sympy.testing.pytest import raises
from sympy.core.expr import unchanged
from sympy.core import symbols, S
from sympy.matrices import Identity, MatrixSymbol, ImmutableMatrix, ZeroMatrix, OneMatrix, Matrix
from sympy.matrices.exceptions import NonSquareMatrixError
from sympy.matrices.expressions import MatPow, MatAdd, MatMul
from sympy.matrices.expressions.inverse import Inverse
from sympy.matrices.expressions.matexpr import MatrixElement
n, m, l, k = symbols('n m l k', integer=True)
A = MatrixSymbol('A', n, m)
B = MatrixSymbol('B', m, l)
C = MatrixSymbol('C', n, n)
D = MatrixSymbol('D', n, n)
E = MatrixSymbol('E', m, n)
def test_entry_matrix():
X = ImmutableMatrix([[1, 2], [3, 4]])
assert MatPow(X, 0)[0, 0] == 1
assert MatPow(X, 0)[0, 1] == 0
assert MatPow(X, 1)[0, 0] == 1
assert MatPow(X, 1)[0, 1] == 2
assert MatPow(X, 2)[0, 0] == 7
def test_entry_symbol():
from sympy.concrete import Sum
assert MatPow(C, 0)[0, 0] == 1
assert MatPow(C, 0)[0, 1] == 0
assert MatPow(C, 1)[0, 0] == C[0, 0]
assert isinstance(MatPow(C, 2)[0, 0], Sum)
assert isinstance(MatPow(C, n)[0, 0], MatrixElement)
def test_as_explicit_symbol():
X = MatrixSymbol('X', 2, 2)
assert MatPow(X, 0).as_explicit() == ImmutableMatrix(Identity(2))
assert MatPow(X, 1).as_explicit() == X.as_explicit()
assert MatPow(X, 2).as_explicit() == (X.as_explicit())**2
assert MatPow(X, n).as_explicit() == ImmutableMatrix([
[(X ** n)[0, 0], (X ** n)[0, 1]],
[(X ** n)[1, 0], (X ** n)[1, 1]],
])
a = MatrixSymbol("a", 3, 1)
b = MatrixSymbol("b", 3, 1)
c = MatrixSymbol("c", 3, 1)
expr = (a.T*b)**S.Half
assert expr.as_explicit() == Matrix([[sqrt(a[0, 0]*b[0, 0] + a[1, 0]*b[1, 0] + a[2, 0]*b[2, 0])]])
expr = c*(a.T*b)**S.Half
m = sqrt(a[0, 0]*b[0, 0] + a[1, 0]*b[1, 0] + a[2, 0]*b[2, 0])
assert expr.as_explicit() == Matrix([[c[0, 0]*m], [c[1, 0]*m], [c[2, 0]*m]])
expr = (a*b.T)**S.Half
denom = sqrt(a[0, 0]*b[0, 0] + a[1, 0]*b[1, 0] + a[2, 0]*b[2, 0])
expected = (a*b.T).as_explicit()/denom
assert expr.as_explicit() == expected
expr = X**-1
det = X[0, 0]*X[1, 1] - X[1, 0]*X[0, 1]
expected = Matrix([[X[1, 1], -X[0, 1]], [-X[1, 0], X[0, 0]]])/det
assert expr.as_explicit() == expected
expr = X**m
assert expr.as_explicit() == X.as_explicit()**m
def test_as_explicit_matrix():
A = ImmutableMatrix([[1, 2], [3, 4]])
assert MatPow(A, 0).as_explicit() == ImmutableMatrix(Identity(2))
assert MatPow(A, 1).as_explicit() == A
assert MatPow(A, 2).as_explicit() == A**2
assert MatPow(A, -1).as_explicit() == A.inv()
assert MatPow(A, -2).as_explicit() == (A.inv())**2
# less expensive than testing on a 2x2
A = ImmutableMatrix([4])
assert MatPow(A, S.Half).as_explicit() == A**S.Half
def test_doit_symbol():
assert MatPow(C, 0).doit() == Identity(n)
assert MatPow(C, 1).doit() == C
assert MatPow(C, -1).doit() == C.I
for r in [2, S.Half, S.Pi, n]:
assert MatPow(C, r).doit() == MatPow(C, r)
def test_doit_matrix():
X = ImmutableMatrix([[1, 2], [3, 4]])
assert MatPow(X, 0).doit() == ImmutableMatrix(Identity(2))
assert MatPow(X, 1).doit() == X
assert MatPow(X, 2).doit() == X**2
assert MatPow(X, -1).doit() == X.inv()
assert MatPow(X, -2).doit() == (X.inv())**2
# less expensive than testing on a 2x2
assert MatPow(ImmutableMatrix([4]), S.Half).doit() == ImmutableMatrix([2])
X = ImmutableMatrix([[0, 2], [0, 4]]) # det() == 0
raises(ValueError, lambda: MatPow(X,-1).doit())
raises(ValueError, lambda: MatPow(X,-2).doit())
def test_nonsquare():
A = MatrixSymbol('A', 2, 3)
B = ImmutableMatrix([[1, 2, 3], [4, 5, 6]])
for r in [-1, 0, 1, 2, S.Half, S.Pi, n]:
raises(NonSquareMatrixError, lambda: MatPow(A, r))
raises(NonSquareMatrixError, lambda: MatPow(B, r))
def test_doit_equals_pow(): #17179
X = ImmutableMatrix ([[1,0],[0,1]])
assert MatPow(X, n).doit() == X**n == X
def test_doit_nested_MatrixExpr():
X = ImmutableMatrix([[1, 2], [3, 4]])
Y = ImmutableMatrix([[2, 3], [4, 5]])
assert MatPow(MatMul(X, Y), 2).doit() == (X*Y)**2
assert MatPow(MatAdd(X, Y), 2).doit() == (X + Y)**2
def test_identity_power():
k = Identity(n)
assert MatPow(k, 4).doit() == k
assert MatPow(k, n).doit() == k
assert MatPow(k, -3).doit() == k
assert MatPow(k, 0).doit() == k
l = Identity(3)
assert MatPow(l, n).doit() == l
assert MatPow(l, -1).doit() == l
assert MatPow(l, 0).doit() == l
def test_zero_power():
z1 = ZeroMatrix(n, n)
assert MatPow(z1, 3).doit() == z1
raises(ValueError, lambda:MatPow(z1, -1).doit())
assert MatPow(z1, 0).doit() == Identity(n)
assert MatPow(z1, n).doit() == z1
raises(ValueError, lambda:MatPow(z1, -2).doit())
z2 = ZeroMatrix(4, 4)
assert MatPow(z2, n).doit() == z2
raises(ValueError, lambda:MatPow(z2, -3).doit())
assert MatPow(z2, 2).doit() == z2
assert MatPow(z2, 0).doit() == Identity(4)
raises(ValueError, lambda:MatPow(z2, -1).doit())
def test_OneMatrix_power():
o = OneMatrix(3, 3)
assert o ** 0 == Identity(3)
assert o ** 1 == o
assert o * o == o ** 2 == 3 * o
assert o * o * o == o ** 3 == 9 * o
o = OneMatrix(n, n)
assert o * o == o ** 2 == n * o
# powsimp necessary as n ** (n - 2) * n does not produce n ** (n - 1)
assert powsimp(o ** (n - 1) * o) == o ** n == n ** (n - 1) * o
def test_transpose_power():
from sympy.matrices.expressions.transpose import Transpose as TP
assert (C*D).T**5 == ((C*D)**5).T == (D.T * C.T)**5
assert ((C*D).T**5).T == (C*D)**5
assert (C.T.I.T)**7 == C**-7
assert (C.T**l).T**k == C**(l*k)
assert ((E.T * A.T)**5).T == (A*E)**5
assert ((A*E).T**5).T**7 == (A*E)**35
assert TP(TP(C**2 * D**3)**5).doit() == (C**2 * D**3)**5
assert ((D*C)**-5).T**-5 == ((D*C)**25).T
assert (((D*C)**l).T**k).T == (D*C)**(l*k)
def test_Inverse():
assert Inverse(MatPow(C, 0)).doit() == Identity(n)
assert Inverse(MatPow(C, 1)).doit() == Inverse(C)
assert Inverse(MatPow(C, 2)).doit() == MatPow(C, -2)
assert Inverse(MatPow(C, -1)).doit() == C
assert MatPow(Inverse(C), 0).doit() == Identity(n)
assert MatPow(Inverse(C), 1).doit() == Inverse(C)
assert MatPow(Inverse(C), 2).doit() == MatPow(C, -2)
assert MatPow(Inverse(C), -1).doit() == C
def test_combine_powers():
assert (C ** 1) ** 1 == C
assert (C ** 2) ** 3 == MatPow(C, 6)
assert (C ** -2) ** -3 == MatPow(C, 6)
assert (C ** -1) ** -1 == C
assert (((C ** 2) ** 3) ** 4) ** 5 == MatPow(C, 120)
assert (C ** n) ** n == C ** (n ** 2)
def test_unchanged():
assert unchanged(MatPow, C, 0)
assert unchanged(MatPow, C, 1)
assert unchanged(MatPow, Inverse(C), -1)
assert unchanged(Inverse, MatPow(C, -1), -1)
assert unchanged(MatPow, MatPow(C, -1), -1)
assert unchanged(MatPow, MatPow(C, 1), 1)
def test_no_exponentiation():
# if this passes, Pow.as_numer_denom should recognize
# MatAdd as exponent
raises(NotImplementedError, lambda: 3**(-2*C))
|