File size: 7,308 Bytes
d1ceb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.simplify.powsimp import powsimp
from sympy.testing.pytest import raises
from sympy.core.expr import unchanged
from sympy.core import symbols, S
from sympy.matrices import Identity, MatrixSymbol, ImmutableMatrix, ZeroMatrix, OneMatrix, Matrix
from sympy.matrices.exceptions import NonSquareMatrixError
from sympy.matrices.expressions import MatPow, MatAdd, MatMul
from sympy.matrices.expressions.inverse import Inverse
from sympy.matrices.expressions.matexpr import MatrixElement

n, m, l, k = symbols('n m l k', integer=True)
A = MatrixSymbol('A', n, m)
B = MatrixSymbol('B', m, l)
C = MatrixSymbol('C', n, n)
D = MatrixSymbol('D', n, n)
E = MatrixSymbol('E', m, n)


def test_entry_matrix():
    X = ImmutableMatrix([[1, 2], [3, 4]])
    assert MatPow(X, 0)[0, 0] == 1
    assert MatPow(X, 0)[0, 1] == 0
    assert MatPow(X, 1)[0, 0] == 1
    assert MatPow(X, 1)[0, 1] == 2
    assert MatPow(X, 2)[0, 0] == 7


def test_entry_symbol():
    from sympy.concrete import Sum
    assert MatPow(C, 0)[0, 0] == 1
    assert MatPow(C, 0)[0, 1] == 0
    assert MatPow(C, 1)[0, 0] == C[0, 0]
    assert isinstance(MatPow(C, 2)[0, 0], Sum)
    assert isinstance(MatPow(C, n)[0, 0], MatrixElement)


def test_as_explicit_symbol():
    X = MatrixSymbol('X', 2, 2)
    assert MatPow(X, 0).as_explicit() == ImmutableMatrix(Identity(2))
    assert MatPow(X, 1).as_explicit() == X.as_explicit()
    assert MatPow(X, 2).as_explicit() == (X.as_explicit())**2
    assert MatPow(X, n).as_explicit() == ImmutableMatrix([
        [(X ** n)[0, 0], (X ** n)[0, 1]],
        [(X ** n)[1, 0], (X ** n)[1, 1]],
    ])

    a = MatrixSymbol("a", 3, 1)
    b = MatrixSymbol("b", 3, 1)
    c = MatrixSymbol("c", 3, 1)

    expr = (a.T*b)**S.Half
    assert expr.as_explicit() == Matrix([[sqrt(a[0, 0]*b[0, 0] + a[1, 0]*b[1, 0] + a[2, 0]*b[2, 0])]])

    expr = c*(a.T*b)**S.Half
    m = sqrt(a[0, 0]*b[0, 0] + a[1, 0]*b[1, 0] + a[2, 0]*b[2, 0])
    assert expr.as_explicit() == Matrix([[c[0, 0]*m], [c[1, 0]*m], [c[2, 0]*m]])

    expr = (a*b.T)**S.Half
    denom = sqrt(a[0, 0]*b[0, 0] + a[1, 0]*b[1, 0] + a[2, 0]*b[2, 0])
    expected = (a*b.T).as_explicit()/denom
    assert expr.as_explicit() == expected

    expr = X**-1
    det = X[0, 0]*X[1, 1] - X[1, 0]*X[0, 1]
    expected = Matrix([[X[1, 1], -X[0, 1]], [-X[1, 0], X[0, 0]]])/det
    assert expr.as_explicit() == expected

    expr = X**m
    assert expr.as_explicit() == X.as_explicit()**m


def test_as_explicit_matrix():
    A = ImmutableMatrix([[1, 2], [3, 4]])
    assert MatPow(A, 0).as_explicit() == ImmutableMatrix(Identity(2))
    assert MatPow(A, 1).as_explicit() == A
    assert MatPow(A, 2).as_explicit() == A**2
    assert MatPow(A, -1).as_explicit() == A.inv()
    assert MatPow(A, -2).as_explicit() == (A.inv())**2
    # less expensive than testing on a 2x2
    A = ImmutableMatrix([4])
    assert MatPow(A, S.Half).as_explicit() == A**S.Half


def test_doit_symbol():
    assert MatPow(C, 0).doit() == Identity(n)
    assert MatPow(C, 1).doit() == C
    assert MatPow(C, -1).doit() == C.I
    for r in [2, S.Half, S.Pi, n]:
        assert MatPow(C, r).doit() == MatPow(C, r)


def test_doit_matrix():
    X = ImmutableMatrix([[1, 2], [3, 4]])
    assert MatPow(X, 0).doit() == ImmutableMatrix(Identity(2))
    assert MatPow(X, 1).doit() == X
    assert MatPow(X, 2).doit() == X**2
    assert MatPow(X, -1).doit() == X.inv()
    assert MatPow(X, -2).doit() == (X.inv())**2
    # less expensive than testing on a 2x2
    assert MatPow(ImmutableMatrix([4]), S.Half).doit() == ImmutableMatrix([2])
    X = ImmutableMatrix([[0, 2], [0, 4]]) # det() == 0
    raises(ValueError, lambda: MatPow(X,-1).doit())
    raises(ValueError, lambda: MatPow(X,-2).doit())


def test_nonsquare():
    A = MatrixSymbol('A', 2, 3)
    B = ImmutableMatrix([[1, 2, 3], [4, 5, 6]])
    for r in [-1, 0, 1, 2, S.Half, S.Pi, n]:
        raises(NonSquareMatrixError, lambda: MatPow(A, r))
        raises(NonSquareMatrixError, lambda: MatPow(B, r))


def test_doit_equals_pow(): #17179
    X = ImmutableMatrix ([[1,0],[0,1]])
    assert MatPow(X, n).doit() == X**n == X


def test_doit_nested_MatrixExpr():
    X = ImmutableMatrix([[1, 2], [3, 4]])
    Y = ImmutableMatrix([[2, 3], [4, 5]])
    assert MatPow(MatMul(X, Y), 2).doit() == (X*Y)**2
    assert MatPow(MatAdd(X, Y), 2).doit() == (X + Y)**2


def test_identity_power():
    k = Identity(n)
    assert MatPow(k, 4).doit() == k
    assert MatPow(k, n).doit() == k
    assert MatPow(k, -3).doit() == k
    assert MatPow(k, 0).doit() == k
    l = Identity(3)
    assert MatPow(l, n).doit() == l
    assert MatPow(l, -1).doit() == l
    assert MatPow(l, 0).doit() == l


def test_zero_power():
    z1 = ZeroMatrix(n, n)
    assert MatPow(z1, 3).doit() == z1
    raises(ValueError, lambda:MatPow(z1, -1).doit())
    assert MatPow(z1, 0).doit() == Identity(n)
    assert MatPow(z1, n).doit() == z1
    raises(ValueError, lambda:MatPow(z1, -2).doit())
    z2 = ZeroMatrix(4, 4)
    assert MatPow(z2, n).doit() == z2
    raises(ValueError, lambda:MatPow(z2, -3).doit())
    assert MatPow(z2, 2).doit() == z2
    assert MatPow(z2, 0).doit() == Identity(4)
    raises(ValueError, lambda:MatPow(z2, -1).doit())


def test_OneMatrix_power():
    o = OneMatrix(3, 3)
    assert o ** 0 == Identity(3)
    assert o ** 1 == o
    assert o * o == o ** 2 == 3 * o
    assert o * o * o == o ** 3 == 9 * o

    o = OneMatrix(n, n)
    assert o * o == o ** 2 == n * o
    # powsimp necessary as n ** (n - 2) * n does not produce n ** (n - 1)
    assert powsimp(o ** (n - 1) * o) == o ** n == n ** (n - 1) * o


def test_transpose_power():
    from sympy.matrices.expressions.transpose import Transpose as TP

    assert (C*D).T**5 == ((C*D)**5).T == (D.T * C.T)**5
    assert ((C*D).T**5).T == (C*D)**5

    assert (C.T.I.T)**7 == C**-7
    assert (C.T**l).T**k == C**(l*k)

    assert ((E.T * A.T)**5).T == (A*E)**5
    assert ((A*E).T**5).T**7 == (A*E)**35
    assert TP(TP(C**2 * D**3)**5).doit() == (C**2 * D**3)**5

    assert ((D*C)**-5).T**-5 == ((D*C)**25).T
    assert (((D*C)**l).T**k).T == (D*C)**(l*k)


def test_Inverse():
    assert Inverse(MatPow(C, 0)).doit() == Identity(n)
    assert Inverse(MatPow(C, 1)).doit() == Inverse(C)
    assert Inverse(MatPow(C, 2)).doit() == MatPow(C, -2)
    assert Inverse(MatPow(C, -1)).doit() == C

    assert MatPow(Inverse(C), 0).doit() == Identity(n)
    assert MatPow(Inverse(C), 1).doit() == Inverse(C)
    assert MatPow(Inverse(C), 2).doit() == MatPow(C, -2)
    assert MatPow(Inverse(C), -1).doit() == C


def test_combine_powers():
    assert (C ** 1) ** 1 == C
    assert (C ** 2) ** 3 == MatPow(C, 6)
    assert (C ** -2) ** -3 == MatPow(C, 6)
    assert (C ** -1) ** -1 == C
    assert (((C ** 2) ** 3) ** 4) ** 5 == MatPow(C, 120)
    assert (C ** n) ** n == C ** (n ** 2)


def test_unchanged():
    assert unchanged(MatPow, C, 0)
    assert unchanged(MatPow, C, 1)
    assert unchanged(MatPow, Inverse(C), -1)
    assert unchanged(Inverse, MatPow(C, -1), -1)
    assert unchanged(MatPow, MatPow(C, -1), -1)
    assert unchanged(MatPow, MatPow(C, 1), 1)


def test_no_exponentiation():
    # if this passes, Pow.as_numer_denom should recognize
    # MatAdd as exponent
    raises(NotImplementedError, lambda: 3**(-2*C))