File size: 10,676 Bytes
d1ceb73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
from sympy.concrete.summations import Sum
from sympy.core.numbers import (I, Rational, oo, pi)
from sympy.core.singleton import S
from sympy.core.symbol import Symbol
from sympy.functions.elementary.complexes import (im, re)
from sympy.functions.elementary.exponential import log
from sympy.functions.elementary.integers import floor
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.special.bessel import besseli
from sympy.functions.special.beta_functions import beta
from sympy.functions.special.zeta_functions import zeta
from sympy.sets.sets import FiniteSet
from sympy.simplify.simplify import simplify
from sympy.utilities.lambdify import lambdify
from sympy.core.relational import Eq, Ne
from sympy.functions.elementary.exponential import exp
from sympy.logic.boolalg import Or
from sympy.sets.fancysets import Range
from sympy.stats import (P, E, variance, density, characteristic_function,
where, moment_generating_function, skewness, cdf,
kurtosis, coskewness)
from sympy.stats.drv_types import (PoissonDistribution, GeometricDistribution,
FlorySchulz, Poisson, Geometric, Hermite, Logarithmic,
NegativeBinomial, Skellam, YuleSimon, Zeta,
DiscreteRV)
from sympy.testing.pytest import slow, nocache_fail, raises
from sympy.stats.symbolic_probability import Expectation
x = Symbol('x')
def test_PoissonDistribution():
l = 3
p = PoissonDistribution(l)
assert abs(p.cdf(10).evalf() - 1) < .001
assert abs(p.cdf(10.4).evalf() - 1) < .001
assert p.expectation(x, x) == l
assert p.expectation(x**2, x) - p.expectation(x, x)**2 == l
def test_Poisson():
l = 3
x = Poisson('x', l)
assert E(x) == l
assert E(2*x) == 2*l
assert variance(x) == l
assert density(x) == PoissonDistribution(l)
assert isinstance(E(x, evaluate=False), Expectation)
assert isinstance(E(2*x, evaluate=False), Expectation)
# issue 8248
assert x.pspace.compute_expectation(1) == 1
def test_FlorySchulz():
a = Symbol("a")
z = Symbol("z")
x = FlorySchulz('x', a)
assert E(x) == (2 - a)/a
assert (variance(x) - 2*(1 - a)/a**2).simplify() == S(0)
assert density(x)(z) == a**2*z*(1 - a)**(z - 1)
@slow
def test_GeometricDistribution():
p = S.One / 5
d = GeometricDistribution(p)
assert d.expectation(x, x) == 1/p
assert d.expectation(x**2, x) - d.expectation(x, x)**2 == (1-p)/p**2
assert abs(d.cdf(20000).evalf() - 1) < .001
assert abs(d.cdf(20000.8).evalf() - 1) < .001
G = Geometric('G', p=S(1)/4)
assert cdf(G)(S(7)/2) == P(G <= S(7)/2)
X = Geometric('X', Rational(1, 5))
Y = Geometric('Y', Rational(3, 10))
assert coskewness(X, X + Y, X + 2*Y).simplify() == sqrt(230)*Rational(81, 1150)
def test_Hermite():
a1 = Symbol("a1", positive=True)
a2 = Symbol("a2", negative=True)
raises(ValueError, lambda: Hermite("H", a1, a2))
a1 = Symbol("a1", negative=True)
a2 = Symbol("a2", positive=True)
raises(ValueError, lambda: Hermite("H", a1, a2))
a1 = Symbol("a1", positive=True)
x = Symbol("x")
H = Hermite("H", a1, a2)
assert moment_generating_function(H)(x) == exp(a1*(exp(x) - 1)
+ a2*(exp(2*x) - 1))
assert characteristic_function(H)(x) == exp(a1*(exp(I*x) - 1)
+ a2*(exp(2*I*x) - 1))
assert E(H) == a1 + 2*a2
H = Hermite("H", a1=5, a2=4)
assert density(H)(2) == 33*exp(-9)/2
assert E(H) == 13
assert variance(H) == 21
assert kurtosis(H) == Rational(464,147)
assert skewness(H) == 37*sqrt(21)/441
def test_Logarithmic():
p = S.Half
x = Logarithmic('x', p)
assert E(x) == -p / ((1 - p) * log(1 - p))
assert variance(x) == -1/log(2)**2 + 2/log(2)
assert E(2*x**2 + 3*x + 4) == 4 + 7 / log(2)
assert isinstance(E(x, evaluate=False), Expectation)
@nocache_fail
def test_negative_binomial():
r = 5
p = S.One / 3
x = NegativeBinomial('x', r, p)
assert E(x) == p*r / (1-p)
# This hangs when run with the cache disabled:
assert variance(x) == p*r / (1-p)**2
assert E(x**5 + 2*x + 3) == Rational(9207, 4)
assert isinstance(E(x, evaluate=False), Expectation)
def test_skellam():
mu1 = Symbol('mu1')
mu2 = Symbol('mu2')
z = Symbol('z')
X = Skellam('x', mu1, mu2)
assert density(X)(z) == (mu1/mu2)**(z/2) * \
exp(-mu1 - mu2)*besseli(z, 2*sqrt(mu1*mu2))
assert skewness(X).expand() == mu1/(mu1*sqrt(mu1 + mu2) + mu2 *
sqrt(mu1 + mu2)) - mu2/(mu1*sqrt(mu1 + mu2) + mu2*sqrt(mu1 + mu2))
assert variance(X).expand() == mu1 + mu2
assert E(X) == mu1 - mu2
assert characteristic_function(X)(z) == exp(
mu1*exp(I*z) - mu1 - mu2 + mu2*exp(-I*z))
assert moment_generating_function(X)(z) == exp(
mu1*exp(z) - mu1 - mu2 + mu2*exp(-z))
def test_yule_simon():
from sympy.core.singleton import S
rho = S(3)
x = YuleSimon('x', rho)
assert simplify(E(x)) == rho / (rho - 1)
assert simplify(variance(x)) == rho**2 / ((rho - 1)**2 * (rho - 2))
assert isinstance(E(x, evaluate=False), Expectation)
# To test the cdf function
assert cdf(x)(x) == Piecewise((-beta(floor(x), 4)*floor(x) + 1, x >= 1), (0, True))
def test_zeta():
s = S(5)
x = Zeta('x', s)
assert E(x) == zeta(s-1) / zeta(s)
assert simplify(variance(x)) == (
zeta(s) * zeta(s-2) - zeta(s-1)**2) / zeta(s)**2
def test_discrete_probability():
X = Geometric('X', Rational(1, 5))
Y = Poisson('Y', 4)
G = Geometric('e', x)
assert P(Eq(X, 3)) == Rational(16, 125)
assert P(X < 3) == Rational(9, 25)
assert P(X > 3) == Rational(64, 125)
assert P(X >= 3) == Rational(16, 25)
assert P(X <= 3) == Rational(61, 125)
assert P(Ne(X, 3)) == Rational(109, 125)
assert P(Eq(Y, 3)) == 32*exp(-4)/3
assert P(Y < 3) == 13*exp(-4)
assert P(Y > 3).equals(32*(Rational(-71, 32) + 3*exp(4)/32)*exp(-4)/3)
assert P(Y >= 3).equals(32*(Rational(-39, 32) + 3*exp(4)/32)*exp(-4)/3)
assert P(Y <= 3) == 71*exp(-4)/3
assert P(Ne(Y, 3)).equals(
13*exp(-4) + 32*(Rational(-71, 32) + 3*exp(4)/32)*exp(-4)/3)
assert P(X < S.Infinity) is S.One
assert P(X > S.Infinity) is S.Zero
assert P(G < 3) == x*(2-x)
assert P(Eq(G, 3)) == x*(-x + 1)**2
def test_DiscreteRV():
p = S(1)/2
x = Symbol('x', integer=True, positive=True)
pdf = p*(1 - p)**(x - 1) # pdf of Geometric Distribution
D = DiscreteRV(x, pdf, set=S.Naturals, check=True)
assert E(D) == E(Geometric('G', S(1)/2)) == 2
assert P(D > 3) == S(1)/8
assert D.pspace.domain.set == S.Naturals
raises(ValueError, lambda: DiscreteRV(x, x, FiniteSet(*range(4)), check=True))
# purposeful invalid pmf but it should not raise since check=False
# see test_drv_types.test_ContinuousRV for explanation
X = DiscreteRV(x, 1/x, S.Naturals)
assert P(X < 2) == 1
assert E(X) == oo
def test_precomputed_characteristic_functions():
import mpmath
def test_cf(dist, support_lower_limit, support_upper_limit):
pdf = density(dist)
t = S('t')
x = S('x')
# first function is the hardcoded CF of the distribution
cf1 = lambdify([t], characteristic_function(dist)(t), 'mpmath')
# second function is the Fourier transform of the density function
f = lambdify([x, t], pdf(x)*exp(I*x*t), 'mpmath')
cf2 = lambda t: mpmath.nsum(lambda x: f(x, t), [
support_lower_limit, support_upper_limit], maxdegree=10)
# compare the two functions at various points
for test_point in [2, 5, 8, 11]:
n1 = cf1(test_point)
n2 = cf2(test_point)
assert abs(re(n1) - re(n2)) < 1e-12
assert abs(im(n1) - im(n2)) < 1e-12
test_cf(Geometric('g', Rational(1, 3)), 1, mpmath.inf)
test_cf(Logarithmic('l', Rational(1, 5)), 1, mpmath.inf)
test_cf(NegativeBinomial('n', 5, Rational(1, 7)), 0, mpmath.inf)
test_cf(Poisson('p', 5), 0, mpmath.inf)
test_cf(YuleSimon('y', 5), 1, mpmath.inf)
test_cf(Zeta('z', 5), 1, mpmath.inf)
def test_moment_generating_functions():
t = S('t')
geometric_mgf = moment_generating_function(Geometric('g', S.Half))(t)
assert geometric_mgf.diff(t).subs(t, 0) == 2
logarithmic_mgf = moment_generating_function(Logarithmic('l', S.Half))(t)
assert logarithmic_mgf.diff(t).subs(t, 0) == 1/log(2)
negative_binomial_mgf = moment_generating_function(
NegativeBinomial('n', 5, Rational(1, 3)))(t)
assert negative_binomial_mgf.diff(t).subs(t, 0) == Rational(5, 2)
poisson_mgf = moment_generating_function(Poisson('p', 5))(t)
assert poisson_mgf.diff(t).subs(t, 0) == 5
skellam_mgf = moment_generating_function(Skellam('s', 1, 1))(t)
assert skellam_mgf.diff(t).subs(
t, 2) == (-exp(-2) + exp(2))*exp(-2 + exp(-2) + exp(2))
yule_simon_mgf = moment_generating_function(YuleSimon('y', 3))(t)
assert simplify(yule_simon_mgf.diff(t).subs(t, 0)) == Rational(3, 2)
zeta_mgf = moment_generating_function(Zeta('z', 5))(t)
assert zeta_mgf.diff(t).subs(t, 0) == pi**4/(90*zeta(5))
def test_Or():
X = Geometric('X', S.Half)
assert P(Or(X < 3, X > 4)) == Rational(13, 16)
assert P(Or(X > 2, X > 1)) == P(X > 1)
assert P(Or(X >= 3, X < 3)) == 1
def test_where():
X = Geometric('X', Rational(1, 5))
Y = Poisson('Y', 4)
assert where(X**2 > 4).set == Range(3, S.Infinity, 1)
assert where(X**2 >= 4).set == Range(2, S.Infinity, 1)
assert where(Y**2 < 9).set == Range(0, 3, 1)
assert where(Y**2 <= 9).set == Range(0, 4, 1)
def test_conditional():
X = Geometric('X', Rational(2, 3))
Y = Poisson('Y', 3)
assert P(X > 2, X > 3) == 1
assert P(X > 3, X > 2) == Rational(1, 3)
assert P(Y > 2, Y < 2) == 0
assert P(Eq(Y, 3), Y >= 0) == 9*exp(-3)/2
assert P(Eq(Y, 3), Eq(Y, 2)) == 0
assert P(X < 2, Eq(X, 2)) == 0
assert P(X > 2, Eq(X, 3)) == 1
def test_product_spaces():
X1 = Geometric('X1', S.Half)
X2 = Geometric('X2', Rational(1, 3))
assert str(P(X1 + X2 < 3).rewrite(Sum)) == (
"Sum(Piecewise((1/(4*2**n), n >= -1), (0, True)), (n, -oo, -1))/3")
assert str(P(X1 + X2 > 3).rewrite(Sum)) == (
'Sum(Piecewise((2**(X2 - n - 2)*(3/2)**(1 - X2)/6, '
'X2 - n <= 2), (0, True)), (X2, 1, oo), (n, 1, oo))')
assert P(Eq(X1 + X2, 3)) == Rational(1, 12)
|