File size: 11,357 Bytes
d1ceb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
# Generated content DO NOT EDIT
class PostProcessor:
    """
    Base class for all post-processors

    This class is not supposed to be instantiated directly. Instead, any implementation of
    a PostProcessor will return an instance of this class when instantiated.
    """
    def num_special_tokens_to_add(self, is_pair):
        """
        Return the number of special tokens that would be added for single/pair sentences.

        Args:
            is_pair (:obj:`bool`):
                Whether the input would be a pair of sequences

        Returns:
            :obj:`int`: The number of tokens to add
        """
        pass

    def process(self, encoding, pair=None, add_special_tokens=True):
        """
        Post-process the given encodings, generating the final one

        Args:
            encoding (:class:`~tokenizers.Encoding`):
                The encoding for the first sequence

            pair (:class:`~tokenizers.Encoding`, `optional`):
                The encoding for the pair sequence

            add_special_tokens (:obj:`bool`):
                Whether to add the special tokens

        Return:
            :class:`~tokenizers.Encoding`: The final encoding
        """
        pass

class BertProcessing(PostProcessor):
    """
    This post-processor takes care of adding the special tokens needed by
    a Bert model:

        - a SEP token
        - a CLS token

    Args:
        sep (:obj:`Tuple[str, int]`):
            A tuple with the string representation of the SEP token, and its id

        cls (:obj:`Tuple[str, int]`):
            A tuple with the string representation of the CLS token, and its id
    """
    def __init__(self, sep, cls):
        pass

    def num_special_tokens_to_add(self, is_pair):
        """
        Return the number of special tokens that would be added for single/pair sentences.

        Args:
            is_pair (:obj:`bool`):
                Whether the input would be a pair of sequences

        Returns:
            :obj:`int`: The number of tokens to add
        """
        pass

    def process(self, encoding, pair=None, add_special_tokens=True):
        """
        Post-process the given encodings, generating the final one

        Args:
            encoding (:class:`~tokenizers.Encoding`):
                The encoding for the first sequence

            pair (:class:`~tokenizers.Encoding`, `optional`):
                The encoding for the pair sequence

            add_special_tokens (:obj:`bool`):
                Whether to add the special tokens

        Return:
            :class:`~tokenizers.Encoding`: The final encoding
        """
        pass

class ByteLevel(PostProcessor):
    """
    This post-processor takes care of trimming the offsets.

    By default, the ByteLevel BPE might include whitespaces in the produced tokens. If you don't
    want the offsets to include these whitespaces, then this PostProcessor must be used.

    Args:
        trim_offsets (:obj:`bool`):
            Whether to trim the whitespaces from the produced offsets.
    """
    def __init__(self, trim_offsets=True):
        pass

    def num_special_tokens_to_add(self, is_pair):
        """
        Return the number of special tokens that would be added for single/pair sentences.

        Args:
            is_pair (:obj:`bool`):
                Whether the input would be a pair of sequences

        Returns:
            :obj:`int`: The number of tokens to add
        """
        pass

    def process(self, encoding, pair=None, add_special_tokens=True):
        """
        Post-process the given encodings, generating the final one

        Args:
            encoding (:class:`~tokenizers.Encoding`):
                The encoding for the first sequence

            pair (:class:`~tokenizers.Encoding`, `optional`):
                The encoding for the pair sequence

            add_special_tokens (:obj:`bool`):
                Whether to add the special tokens

        Return:
            :class:`~tokenizers.Encoding`: The final encoding
        """
        pass

class RobertaProcessing(PostProcessor):
    """
    This post-processor takes care of adding the special tokens needed by
    a Roberta model:

        - a SEP token
        - a CLS token

    It also takes care of trimming the offsets.
    By default, the ByteLevel BPE might include whitespaces in the produced tokens. If you don't
    want the offsets to include these whitespaces, then this PostProcessor should be initialized
    with :obj:`trim_offsets=True`

    Args:
        sep (:obj:`Tuple[str, int]`):
            A tuple with the string representation of the SEP token, and its id

        cls (:obj:`Tuple[str, int]`):
            A tuple with the string representation of the CLS token, and its id

        trim_offsets (:obj:`bool`, `optional`, defaults to :obj:`True`):
            Whether to trim the whitespaces from the produced offsets.

        add_prefix_space (:obj:`bool`, `optional`, defaults to :obj:`True`):
            Whether the add_prefix_space option was enabled during pre-tokenization. This
            is relevant because it defines the way the offsets are trimmed out.
    """
    def __init__(self, sep, cls, trim_offsets=True, add_prefix_space=True):
        pass

    def num_special_tokens_to_add(self, is_pair):
        """
        Return the number of special tokens that would be added for single/pair sentences.

        Args:
            is_pair (:obj:`bool`):
                Whether the input would be a pair of sequences

        Returns:
            :obj:`int`: The number of tokens to add
        """
        pass

    def process(self, encoding, pair=None, add_special_tokens=True):
        """
        Post-process the given encodings, generating the final one

        Args:
            encoding (:class:`~tokenizers.Encoding`):
                The encoding for the first sequence

            pair (:class:`~tokenizers.Encoding`, `optional`):
                The encoding for the pair sequence

            add_special_tokens (:obj:`bool`):
                Whether to add the special tokens

        Return:
            :class:`~tokenizers.Encoding`: The final encoding
        """
        pass

class Sequence(PostProcessor):
    """
    Sequence Processor

    Args:
        processors (:obj:`List[PostProcessor]`)
            The processors that need to be chained
    """
    def __init__(self, processors):
        pass

    def num_special_tokens_to_add(self, is_pair):
        """
        Return the number of special tokens that would be added for single/pair sentences.

        Args:
            is_pair (:obj:`bool`):
                Whether the input would be a pair of sequences

        Returns:
            :obj:`int`: The number of tokens to add
        """
        pass

    def process(self, encoding, pair=None, add_special_tokens=True):
        """
        Post-process the given encodings, generating the final one

        Args:
            encoding (:class:`~tokenizers.Encoding`):
                The encoding for the first sequence

            pair (:class:`~tokenizers.Encoding`, `optional`):
                The encoding for the pair sequence

            add_special_tokens (:obj:`bool`):
                Whether to add the special tokens

        Return:
            :class:`~tokenizers.Encoding`: The final encoding
        """
        pass

class TemplateProcessing(PostProcessor):
    """
    Provides a way to specify templates in order to add the special tokens to each
    input sequence as relevant.

    Let's take :obj:`BERT` tokenizer as an example. It uses two special tokens, used to
    delimitate each sequence. :obj:`[CLS]` is always used at the beginning of the first
    sequence, and :obj:`[SEP]` is added at the end of both the first, and the pair
    sequences. The final result looks like this:

        - Single sequence: :obj:`[CLS] Hello there [SEP]`
        - Pair sequences: :obj:`[CLS] My name is Anthony [SEP] What is my name? [SEP]`

    With the type ids as following::

        [CLS]   ...   [SEP]   ...   [SEP]
          0      0      0      1      1

    You can achieve such behavior using a TemplateProcessing::

        TemplateProcessing(
            single="[CLS] $0 [SEP]",
            pair="[CLS] $A [SEP] $B:1 [SEP]:1",
            special_tokens=[("[CLS]", 1), ("[SEP]", 0)],
        )

    In this example, each input sequence is identified using a ``$`` construct. This identifier
    lets us specify each input sequence, and the type_id to use. When nothing is specified,
    it uses the default values. Here are the different ways to specify it:

        - Specifying the sequence, with default ``type_id == 0``: ``$A`` or ``$B``
        - Specifying the `type_id` with default ``sequence == A``: ``$0``, ``$1``, ``$2``, ...
        - Specifying both: ``$A:0``, ``$B:1``, ...

    The same construct is used for special tokens: ``<identifier>(:<type_id>)?``.

    **Warning**: You must ensure that you are giving the correct tokens/ids as these
    will be added to the Encoding without any further check. If the given ids correspond
    to something totally different in a `Tokenizer` using this `PostProcessor`, it
    might lead to unexpected results.

    Args:
        single (:obj:`Template`):
            The template used for single sequences

        pair (:obj:`Template`):
            The template used when both sequences are specified

        special_tokens (:obj:`Tokens`):
            The list of special tokens used in each sequences

    Types:

        Template (:obj:`str` or :obj:`List`):
            - If a :obj:`str` is provided, the whitespace is used as delimiter between tokens
            - If a :obj:`List[str]` is provided, a list of tokens

        Tokens (:obj:`List[Union[Tuple[int, str], Tuple[str, int], dict]]`):
            - A :obj:`Tuple` with both a token and its associated ID, in any order
            - A :obj:`dict` with the following keys:
                - "id": :obj:`str` => The special token id, as specified in the Template
                - "ids": :obj:`List[int]` => The associated IDs
                - "tokens": :obj:`List[str]` => The associated tokens

             The given dict expects the provided :obj:`ids` and :obj:`tokens` lists to have
             the same length.
    """
    def __init__(self, single, pair, special_tokens):
        pass

    def num_special_tokens_to_add(self, is_pair):
        """
        Return the number of special tokens that would be added for single/pair sentences.

        Args:
            is_pair (:obj:`bool`):
                Whether the input would be a pair of sequences

        Returns:
            :obj:`int`: The number of tokens to add
        """
        pass

    def process(self, encoding, pair=None, add_special_tokens=True):
        """
        Post-process the given encodings, generating the final one

        Args:
            encoding (:class:`~tokenizers.Encoding`):
                The encoding for the first sequence

            pair (:class:`~tokenizers.Encoding`, `optional`):
                The encoding for the pair sequence

            add_special_tokens (:obj:`bool`):
                Whether to add the special tokens

        Return:
            :class:`~tokenizers.Encoding`: The final encoding
        """
        pass